欢迎加入力化学耦合及智能介质课题组
科研教学 - 梁 旭
《飞行器总体设计》本科生课程;《航空航天技术概论》本科生课程;
《现代飞行器设计》研究生课程;《高超声速飞行器热结构分析及应用》研究生课程
- 国家自然科学基金面上项目,2025.01-2028.12,主持;
- 国家自然科学基金优秀青年项目,2022.01-2024.12,主持;
- 国家自然科学基金面上项目,2021.01-2024.12,主持;
- 国家自然科学基金青年项目,2018.01-2020.12,主持;
- 国家重点研发计划国际合作项目,2019.01-2021.12,骨干。
- 中国博士后科学基金面上资助(一等),2016.01-2018.12,主持;
- 南京航空航天大学纳智能材料器件教育部重点实验室开放课题,2019.01-2020.12,主持;
- 中央高校基本科研业务-综合交叉项目,2016.01-2018.12,主持;
- 西安航天动力研究所横向课题,2020.01-2021.02,主持
-
李斯,梁旭,申胜平,徐明龙,一种高精度基于金属弹性元件的挠曲电式压力传感器,专利号:ZL201310656546.8, 2015.8.26
-
李斯,梁旭,张舒文,申胜平,徐明龙,一种基于测量电荷的挠曲电系数直接测量装置及方法,专利号:ZL201410114668.9, 2015.4.15
-
李斯,梁旭,申胜平,徐明龙,一种基于微机电系统的挠曲电式微压力传感器,专利号:ZL201310655468.X, 2015.8.26
-
卢建锋,梁旭,胡淑玲,申胜平,徐明龙,一种高灵敏度叠层式挠曲电压力传感器,专利号:ZL201410290568.1, 2015.8.5
-
胡涛涛,申胜平,卢建锋,杨文君,梁旭,郁汶山,一种基于检测电荷的挠曲电动态效应直接检测装置及方法,专利号:ZL201510638757.8,2017.11
-
陈春林,梁旭,申胜平,陈文浩,于亦文,兰梦蝶,一种可调应变梯度的薄膜材料挠曲电系数测量装置和方法,ZL201911373842,0
-
胡淑玲,张浩然,梁旭,宋家玮,夏锐,申胜平,一种可展向变形的仿鸟扑翼飞行器及驱动方法,ZL 2021 1 0845406.X
在Phys. Rev. Lett., Nat. Commun., Adv. Funct. Mater., Sci. Bullet., 等国内外学术期刊上发表论文40余篇。
期刊论文目录:
[52] Zhentao Wang, Da Li, Wenyuan Liu, Xu Liang, Weichen Zhao, Jinnan Liu, Jiajia Ren, Tao Zhou, Diming Xu(*), Wenfeng Liu and Di Zhou(*). 2024. Improved energy storage properties achieved in NaNbO3-based relaxor antiferroelectric ceramics via antiparallel polar nanoregion design. Journal of Materials Chemistry A, 30: 19551-19558.
[51] Xin Zhang(#), Shuaicheng Liu(#), Huiting Dong, Wensi Xing, Wenyuan Liu, Feng Deng, Gaosheng Yan, Jianwei Song(*), Xu Liang(*), Shuling Hu, and Shengping Shen(*). 2024. Soft elastomer-based flexoelectric nanocomposites for ultrahigh sensitive force sensor arrays.
[50] Hongxing Shang(#), Tang Sheng(#), Huiting Dong(#), Yihan Wu, Qianqian Ma, Xin Zhang, Lingtong Lv, Hongyu Cao, Feng Deng, Xu Liang(*), Shuling Hu, and Shengping Shen(*). 2024. Synthesizing ordered polar patterns in room-temerpature SrTiO3 nanofilms via wrinkle-induced flexoelectricity.
[49] Xu Liang(*), Huiting Dong, Yifan Wang, Qianqian Ma, Hongxing Shang, Shuling Hu, Shengping Shen(*). 2024. Advancements of Flexoelectric Materials and Their Implementations in Flexoelectric Devices, Advanced Functional Materials, 2409906.
[48] Rui Song; Feng Deng; Xu Liang(*); Jianwei Song(*); Teng Li(*); Shengping Shen 2024. A multiscale mechanics model for elastic properties of densified wood. Journal of the Mechanics and Physics of Solids, 119: 105761.
[47] Xin Zhang, Rui Lv, Huiting Dong, Wensi Xing, Yifan Wang, Qianqian Ma, Wenyuan Liu, Feng Deng, Jianwei Song(*), Xu Liang(*), Shuling Hu, Shengping Shen. 2024. Flexoelectric response of SrTiO3 ceramics by Nb-doping and annealing treatment in N2.
[46] Lianmeng Si, Hong Xiao, Wensi Xing, Rui Song, Zhaoqi Li, Yiju Li(*), Xu Liang(*), Jianwei Song(*), Shengping Shen. 2024. Have a Cake and Eat it Too: A Nanofluidic Hybrid Membrane with Both High Stability and Ionic Conductivity. Advanced Functional Materials, 2304039.
[45] Rui-tao Li, Diming Xu(*), Chao Du, Qianqian Ma, Feng Zhang, Xu Liang(*), Dawei Wang(*), Zhong-Qi Shi, Wen-fen Liu, Di Zhou(*). 2024. Giant dielectric tunability in ferroelectric ceramics with ultralow loss by ion substitution design. Nature Communications, 15: 3754.
[44] Hongxing Shang, Huiting Dong, Xu Liang (*), Feng Deng, Shuling Hu, Shengping Shen (*). 2024. Evolution of flexoelectric polar patterns in wrinkled thin films.
[43] Wensi Xing, Hongyu Cao, Xin Zhang, Xu Liang(*), Jianwei Song(*), Shengping Shen. 2024. Enhanced flexoelectricity in barium titanate-cellulose composite thin films. Acta Mechanica Solida Sinica.
[42] Hongxing Shang, Xu Liang(*), Feng Deng, Shuling Hu, Shengping Shen(*). 2024. Mechanical control of polar patterns in wrinkled thin films via flexoelectricity, Physical Review Letters, 132: 116201.
[41] Jia-Ben Song, Yun-Hao Zhang, Yu-Feng Li, Jia-Cheng Zhang(*), Xu Liang, Zhen-Dong Sha(*). 2023. Removal of intrate by FeSiBC metallic glasses: high efficiency and superior reusability. Physical Chemistry Chemical Physics, 25: 32151-32157.
[40] Lianmeng Si, Yihan Wu, Hong Xiao, Wensi Xing, Rui Song, Sha Wang, Xu Liang, Wenshan Yu (*), Jianwei Song (*), Shengping Shen. 2023. A Superstable, Flexible, and Scalable Nanofluidic Ion Regulation Composite Membrane. Science Bulletin, 68(20): 2344-2353.
[39] Feng Deng, Wenshan Yu, Xu Liang, Shengping Shen(*). 2023. The existence and uniqueness theorem for linear flexoelectricity and application to the Galerkin approximation. Mathematics and Mechanics of Solids, 28(10):2278-2299.
[38] Feng Deng, Wenshan Yu, Xu Liang, Shengping Shen(*). 2023. A mixed finite element method for large deformation of flexoelectric materials. Applied Mathematical Modelling, 118: 303-321.
[37] Hongxing Shang, Xu Liang(*), Feng Deng(*), Shuling Hu, Shengping Shen. 2022. Flexoelectricity in wrinkled thin films. International Journal of Mechanical Science, 234(15): 107685.
[36] Mengdie Lan, Wenjun Yang, Xu Liang(*), Shuling Hu, Shengping Shen. 2022. Vibration modes of flexoelectric circular plate. Acta Mechanica Sinica, 38: 422063.
[35] Xu Liang, Yiwen Yu, Ruijia Liu, Wenyuan Liu, Shengping Shen (*). 2022. Flexoelectricity in periodically poled lithium niobate by PFM. Journal of Physics D: Applied Physics, 55: 335303.
[34] Xiao-xiao Liu (*), Xu Liang. 2022. Global sensitivity analysis of electromechanical coupling behaviors for flexoelectric nanostructures. International Journal of Mechanics and Materials Design, 18, 21-37.
[33] 梁旭(*),尚红星,邓谦,胡淑玲,申胜平;2021,固体电介质中的挠曲电效应。固体力学学报,41(1):33-44。
[32] Chen W H., Liang X(*)., Shen S P., 2021. Forced vibration of piezoelectric and flexoelectric Euler-Bernoulli beams by dynamic Green functions. Acta Mechnica, 232:449-460.
[31] Deng Q., Lv S H., Li Z Q., Tan K., Liang X., Shen S P(*)., 2020. The impact of flexoelectricity on materials, devices, and physics. Journal of Applied Physics, 128: 080902(Online).
[30] 陈春林,李肇奇,梁旭(*),胡淑玲,申胜平,2020,悬臂梁挠曲电俘能器的力电耦合模型及性能分析。固体力学学报,41(2):159-169。
[29] 陈春林,梁旭(*),胡淑玲,申胜平,2019,聚偏氟乙烯薄膜挠曲电效应的实验研究。实验力学,35(5): 738-746。
[28] Yang W J., Liang X(*)., Deng Q., Shen S P(*) 2020. Rayleigh wave propagation in a homogeneous centrosymmetric flexoelectric half-space. Ultrasonics 103: 106105.
[27] Chen Min et al.,...Liang X.,...Xia W J(*)., Wang X F(*)., 2019. Superhydrophobic Surface with Controllable Adhesion for Anti-Roof-Collapse Application in Flexible Microfluidics. Advanced Materials Interfaces 1901178.(online)
[26] Guo Q L., Koo J., Xie Z Q.,...Liang X.,...Huang Y G., Rogers J(*)., 2019. A Bioresorbable Magnetically Coupled System for Low-Frequency Wireless Power Transfer. Advanced Functional Materials, 1905451.(online)
[25] Lu J F., Liang X(*)., Yu W S., Hu S L., Shen S P(*)., 2019. Temperature dependence of flexoelectric coefficient for bulk polymer polyvinylidene fluoride. Journal of Physics D-Applied Physics, 52: 075302.
[24] Yang W J., Deng Q., Liang X(*)., Shen S P(*)., 2018. Lamb wave propagation with flexoelectricity and strain gradient elasticity considered. Smart Materials and Structures, 27: 085003.
[23] Yang W J., Hu T T., Liang X(*)., Shen S P(*)., 2018. On band structures of layered phononic crystals with flexoelectricity. Archive of Applied Mechanics, 88: 629-644.
[22] Yu P F., Chen J Y., Wang H L., Liang X(*)., Shen S P(*)., 2018. Path-independent integrals in electromechanical systems with flexoelectricity. International Journal of Solids and Structures, 147: 20-28.
[21] Hu T T., Yang W J., Liang X(*)., Shen S P(*)., 2017. Wave propagation in Flexoelectric Microstructure Solids. Journal of Elasticity, 130: 197-210.
[20] Liang X., Zhang R Z., Hu S L., Shen S P(*)., 2017. Flexoelectric energy harvesters based on Timoshenko laminated beam theory. Journal of Intelligent Material Systems and Structures, 28: 2064-2073.
[19] Yang W J., Liang X(*)., Shen S P(*)., 2017. Love waves in layered flexoelectric structures. Philosophical Magazine, 97: 3186-3209.
[18] Hu T T., Deng Q., Liang X(*)., Shen S P(*)., 2017. Measuring the flexoelectric coefficient of bulk barium titanate from a shock wave experiment. Journal of Applied Physics, 122: 055106.
[17] Liang X., Hu S L., Shen S P(*)., 2017. Nanoscale mechanical energy harvesting using piezoelectricity and flexoelectricity. Smart Materials and Structures, 26: 035020. (China Top Cited Author Award)
[16] Zhang R Z., Liang X., Shen S P(*)., 2016. A Timoshenko dielectric beam model with flexoelectric effect. Meccanica, 51: 1181-1188.
[15] Liang X., Yang W J., Hu S L., Shen S P(*)., 2016. Buckling and vibration of flexoelectric nanofilms subjected to mechanical loads. Journal of Physics D-Applied Physics, 49: 115307. (China Top Cited Author Award)
[14] Zhang S W., Xu M L(*)., Ma G L., Liang X., Shen S P(*)., 2016. Experimental method research on transverse flexoelectric response of poly(vinylidene fluoride). Japanese Journal of Applied Physics, 55: 071601.
[13] Lu J F., Lv J Y., Liang X(*)., Xu M L., Shen S P(*)., 2015. Improved approach to measure the direct flexoelectric coefficient of bulk polyvinylidene fluoride. Journal of Applied Physics, 119: 094104.
[12] Yang W J., Liang X(*)., Shen S P(*)., 2015. Electromechanical response of piezoelectric nanoplates with flexoelectricity. Acta Mechanica, 226: 3097-3110.
[11] Lu J F., Liang X(*)., Hu S L(*)., 2015. Flexoelectricity in Solid Dielectrics: From Theory to Applications. CMC-Computer, Mechanics and Continua, 45(3): 145-162.
[10] Zhang S W., Xu M L(*)., Liang X., Shen S P., 2015. Shear flexoelectric response mu(1211) in polyvinylidene fluoride. Journal of Applied Physics, 117: 204102.
[9] Zhang S W., Liang X., Xu M L(*)., Feng B., Shen S P., 2015. Shear flexoelectric response along 3121 direction in polyvinylidene fluoride. Applied Physics Letters, 107: 142902.
[8] Liang X., Hu S L., Shen S P(*)., 2015. Size-dependent buckling and vibration of piezoelectric nanostructures due to flexoelectricity. Smart Materials and Structures, 24: 105012.
[7] Liang X., Hu S L., Shen S P(*)., 2015. Surface effects on the post-buckling of piezoelectric nanowires. Physica E-Low-Dimensional Systems & Nanostructures, 69: 61-64.
[6] Liang X., Hu S L., Shen S P(*)., 2014. Effects of surface and flexoelectricity on a piezoelectric nanobeam. Smart Materials and Structures, 23: 035020.
[5] Liang X., Shen S P(*)., 2013. Size-dependent piezoelectricity and elasticity due to the electric field-strain gradient coupling and strain gradient elasticity. International Journalof Applied Mechanics, 5(2): 1350015.
[4] Liang X., Hu S L., Shen S P(*)., 2013. A new Bernoulli-Euler beam model based on a simplified strain gradient elasticity theory and its applications. Composite Structures, 111: 317-323.
[3] Liang X., Hu S L., Shen S P(*)., 2013. Bernoulli-Euler Dielectric Beam Model Based on Strain-Gradient Effect. Journal of Applied Mechanics-Transactions of the ASME, 80(4): 044502.
[2] Liang X., Shen S P(*)., 2013. Dynamic analysis of Bernoulli-Euler piezoelectric nanobeam with electrostatic force. Science China-Physics Mechanics & Astronomy, 56(10): 1930-1937.
[1] Liang X., Shen S P(*)., 2012. Effect of electrostatic force on a piezoelectric nanobeam. Smart Materials and Structures, 21: 015001.