(1)太阳能热利用技术 Solar thermal utilizations
目前,太阳能利用方式的主体是光伏发电,其凭借系统构造简单及扩展性好的优势规模发展迅速。然而,由于太阳能时空分布不连续性的固有属性,光伏利用方式中无法储能的缺点日益显著。太阳能热利用技术,其凭借低成本储能保证系统昼夜连续稳定运行的优势而得到能源领域越来越多的关注。为了进一步提升太阳能光热利用效率、降低设备及运行成本,更先进的集热技术、蓄热技术、调控技术、现场测试技术、互补技术、循环工质及优化运行策略及都是未来太阳能热利用领域研究的重点和难点。
The photovoltaic (PV) technology is currently the most popular way of solar power utilization due to the advantages of simplicity and scalability. However, due to fact that the solar resource is unevenly distributed in time and space, the energy storage issue for PV becomes increasingly serious. Therefore, with the distinct advantage of low-cost energy storage for continuous operation, the concentrated solar power (CSP) technology based on solar thermal utilization has been drawing more and more attention. Our research is focused on the advanced promoting technologies for CSP, covering sun-tracking, solar collection, energy storage, on-site testing, thermodynamic cycle, system integration, system regulation & control, hybrid systems, etc.
点-线聚焦混合镜场热发电系统
Point-/Line-focus combined scheme for CSP system
太阳能-化石能源热互补发电系统
Solar-coal hybrid power generation system
300kWt广角跟踪抛物槽式集热实验场
300kWt double-axis parabolic-trough experimental system
移动式激光靶向光学测试系统:发射端(左);接收端(右)
Portable laser-target optical test system: launcher (left) and target (right)
(2)太阳能全光谱利用技术 Solar full-spectrum utilizations
太阳能是一种极具大规模应用潜力的可再生能源,是解决我国能源结构调整重大需求的重要途径之一。然而,由于能量随太阳光谱分布不均的内在特性,目前已有单一太阳能利用方式存在综合利用率低的问题亟待解决。通过分析太阳能不同利用方式(光热、光伏、光化学利用等)在能量收集、转化与利用过程中各自特征,进而将不同利用方式进行耦合互补是全面提升太阳能综合利用率的有效手段之一。
Solar energy is potentially the most promising type of renewable energy for large-scale utilization in the future. However, due to the high-cost and low-efficiency of currently single approach for solar utilization, such as STE, PV and solar chemistry, hyridization of different approaches seems promising because each single approach corresponds to specifically different spectrum range of sunlight. Our research is focused on the solar full-spectrum utilization technology, aiming to maximize the comprehensive utilization of solar energy.
太阳能光化学-光伏全光谱综合利用系统
Solar photochemical-photovoltaic full-spectrum utilization system
聚光太阳能光-热协同催化机制
Mechanism of concentrating photo-thermo-catalysis synergism
(3)界面能质传输与转化机理 Interfacial mass transport and energy conversion
能量交换与物质传递过程广泛存在于能源化工领域中,而界面又是能质传输与转化过程的核心场所(如气-液界面之于相变换热过程,流-固界面之于催化反应过程)。因而,对于界面能质传输与转化机理的深入研究是实现能源化工领域高效节能目标的重要基础之一。
Interfacial mass transport and energy conversion is the core of different physical and chemical processes, such as phase-change and catalytic reaction, therefore of essential significance in the fields of power and chemical engineering. Our research is focused on the molecular-scale explorations to fundamental mechanisms of different interfacial phenomena influencing the macroscopic performance through multi-scale interactions.
固壁冷凝成核阶段特征随表面自由能变化规律
Dependence of nucleation characteristics on surface free energy in surface condensation
珠状凝结成核阶段分子动力学模拟结果:势能(左);密度(右)
Nucleation of dropwise surface condensation: potential energy (left) and density (right)
亲-疏水复合表面强化凝结过程的分子动力学模拟结果:珠状凝结(左);膜状凝结(右)
Condensation enhancements by hydrophobic-hydrophilic composite surface: dropwise (left) and filmwise (right)
欢迎具有能源、化工、机械、材料等相关专业背景的同学报考研究生!!!