1. L. Yang, Z. Zhao, C. Cui, J. Zhang, J. Wei. Effect of nickel and cobalt doping on the redox performance of SrFeO3-δ toward chemical looping dry reforming of methane. Energy & Fuels, Accepted.
2. L. Yang, Z. Zhao, J. Hao, J. Wei, J. Zhang. Oxygen release and reduction kinetics of La0.35Sr0.35Ba0.3Fe1-xCoxO3 as oxygen carriers for chemical looping dry reforming of methane. Applications Energy Combust. Sci. 2023, in press
https://doi.org/10.1016/j.jaecs.2023.100173
3. L. Yang, J. Zhang, J. Wei. Highly active La0.35Sr0.35Ba0.3Fe1-xCoxO3 oxygen carriers with the anchored nanoparticles for chemical looping dry reforming of methane. Fuel 2023, 349, 128771.
https://www.sciencedirect.com/science/article/pii/S0016236123013844?via%3Dihub
4. H. Liu, J. Zhang, J. Wei, Mn and Mg synergistically stabilized CaO as an effective thermochemical material for solar energy storage. Sol. Energy Mater Sol. Cells 2023, 252, 112202.
https://www.sciencedirect.com/science/article/abs/pii/S0927024823000235
5. X. Wang, S. Abanades, S. Chuayboon, J. Zhang, J. Wei. Solar-driven chemical looping reforming of methane over SrFeO3-δ-Ca0.5Mn0.5O nanocomposite Foam. Int. J. Hydrogen Energy 2022, 47, 33664-33676.
https://doi.org/10.1016/j.ijhydene.2022.07.241
6. X. Wang, L. Yang, X. Ji, Y. Gao, F. Li, J. Zhang, J. Wei. Reduction kinetics of SrFeO3−δ/CaO∙MnO nanocomposite as effective oxygen carrier for chemical looping partial oxidation of methane. Front. Chem. Sci. Eng. 2022, 16, 1726-1734
https://doi.org/10.1007/s11705-022-2188-5
7. Z. Zhao, J. Liu, X. Xi, Y. Wu, J. Zhang. Synthesis of cellular silica using microbubbles as templates. Nanomaterials 2022, 12, 2794.
https://doi.org/10.3390/nano12162794
8. X. Ji, Y. Liu, J. Liu, J. Zhang. Na2WO4-tuned manganese ore as a high-effective redox catalyst for selective hydrogen combustion in the presence of methane and benzene, Appl. Catal. B 2022, 307, 121194.
https://www.sciencedirect.com/science/article/pii/S0926337322001345
9. Y. Liu, H. Liu, X. Wang, X. Ji, J. Wei, J. Zhang. Orthogonal preparation of SrFeO3-δ nanocomposites as effective oxygen transfer agents for chemical-looping steam methane reforming, Energy & Fuels 2021, 35, 17848-17860. https://pubs.acs.org/doi/10.1021/acs.energyfuels.1c02357
10. C. Huo, X. Tian, C. Chen, J. Zhang, Y. Nan, Q. Zhong. X. Huang, J. Hu, D. Li. Hierarchically porous alumina catalyst carrier with biomimetic vein structure prepared by direct ink writing, J. Eur. Ceram. Soc. 2021, 41, 4231-4241.
https://www.sciencedirect.com/science/article/pii/S0955221921000996
11. C. Chen, W. Yu, Y. Duan, X. Wang, J. Zhang. Chlorine-promoted perovskite nanocomposite as a high-performance oxygen transfer agent for chemical looping methane-assisted CO2 splitting, Chem. Eng. J. Adv. 2020, 4, 100052.
https://www.sciencedirect.com/science/article/pii/S2666821120300521
12. W. Yu, X. Wang, Y. Liu, J. Wei, J. Zhang. Effect of composition on the redox performance of strontium ferrite nanocomposite, Energy & Fuels 2020, 34, 8644-8652.
13. https://pubs.acs.org/doi/full/10.1021/acs.energyfuels.0c01397
段一菲, 陈存壮, 张军社, 王新赫, 魏进家. 化学链小分子转化研究进展, 中国科学:化学. 2020, 50, 337-365.
https://doi.org/10.1360/SSC-2019-0156
14. J. Zhang, Y. Mao, J. Zhang, J. Tian, M. B. Sullivan, X.-M. Cao, Y. Zeng, F. Li, P. Hu. CO2 reforming of ethanol: density functional theory calculations, microkinetic modeling, and experimental studies. ACS Catal. 2020, 10, 9624-9633.
https://pubs.acs.org/doi/full/10.1021/acscatal.9b05231
15. X. Wang, Y. Liu, K. Liu, J. Zhang, J. Wei. Phosphorus-tuned nickel as high coke-resistant catalyst with high reforming activity. Int. J. Hydrogen Energy 2020, 43, 28325-28336.
https://www.sciencedirect.com/science/article/pii/S0360319920327853
16. X. Wang, J. Wei, J. Zhang. Can steam-and CO-rich streams be produced sequentially in the isothermal chemical looping super-dry reforming scheme? ACS Omega 2020, 5, 5401-5406.
https://pubs.acs.org/doi/10.1021/acsomega.9b04464
17. X. Wang, X. Du, W. Yu, J. Wei, J. Zhang. Coproduction of hydrogen and methanol from methane by chemical looping reforming, Ind. Eng. Chem. Res. 2019, 58, 10296-10306.
https://pubs.acs.org/doi/full/10.1021/acs.iecr.9b01695
18. R. B. Dudek, Y. Gao, J. Zhang, F. Li. Manganese-containing redox catalysts for selective hydrogen combustion under a cyclic redox scheme, AIChE J. 2018, 64, 3141-3150.
https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.16173
19. S. Baek, Y. Ahn, J. Zhang, J. Min, H. Lee, J. Lee. Enhanced methane hydrate formation with cyclopentane hydrate seeds, Appl. Energy 2017, 202, 32-41.
https://www.sciencedirect.com/science/article/pii/S0306261917306128
20. J. Zhang, V. Haribal, F. Li. Perovskite nanocomposites as effective CO2-splitting agents in a cyclic redox scheme, Sci. Adv. 2017, 3, e1701184.
https://www.science.org/doi/10.1126/sciadv.1701184
21. A. Shafiefarhood, J. Zhang, L. M. Neal, F. Li. Rh-Promoted mixed oxides for “low-temperature” methane partial oxidation in absences of gaseous oxidants. J. Mater. Chem. A 2017, 5, 11930-11939.
https://pubs.rsc.org/en/content/articlelanding/2017/TA/C7TA01398A
22. J. Zhang, F. Li, Coke-resistant Ni@SiO2 catalyst for dry reforming of methane, Appl. Catal. B 2015, 176-177, 513-521.
https://www.sciencedirect.com/science/article/pii/S0926337315002271
23. J. Zhang, A. Byeon, J. Lee. Boron-doped carbon–iron nanocomposites as efficient oxygen reduction electrocatalysts derived from carbon dioxide, Chem. Commun. 2014, 50, 6349-6352.
https://pubs.rsc.org/en/content/articlelanding/2014/cc/c4cc01903b
24. J. Zhang, J. Lee. Supercapacitor electrodes derived from carbon dioxide, ACS Sus. Chem. Eng. 2014, 1, 8665-8671.
https://pubs.acs.org/doi/full/10.1021/sc400414r
25. J. Zhang, A. Byeon, J. W. Lee. Boron-doped electrocatalysts derived from carbon dioxide, J. Mater. Chem. A 2013, 2, 735-740.
https://pubs.rsc.org/en/content/articlelanding/2013/TA/c3ta11248a
26. X. Ran, J. Zhang, J. Lee. Carbon dioxide-facilitated low-temperature hydrogen desorption from polyaminoborane, J. Phys. Chem. C 2013, 117, 3799-3803.
https://pubs.acs.org/doi/10.1021/jp311315t
27. J. Zhang, J. Lee. Production of boron-doped porous carbon by the reaction of carbon dioxide with sodium borohydride at atmospheric pressure, Carbon 2013, 53, 216-221.
https://www.sciencedirect.com/science/article/pii/S0008622312008640
28. O. Salako, C. Lo, J. Zhang, A. Couzis, P. Somasundaran, J. Lee. Adsorption of sodium dodecyl sulfate on clathrate hydrates in the presence of salt, J. Colloid Interface Sci. 2012, 386, 333-337.
https://www.sciencedirect.com/science/article/pii/S0021979712007710
29. C. Lo, J. Zhang, P. Somasundaran, J. Lee. Investigations of surfactant effects on gas hydrate formation via infrared spectroscopy, J. Colloid Interface Sci. 2012, 376, 173-176.
https://www.sciencedirect.com/science/article/pii/S0021979712002548
30. J. Zhang, J. Lee, Progress and prospects in thermolytic dehydrogenation of ammonia borane for mobile applications, Korean J. Chem. Eng. 2012, 29, 421-431.
https://link.springer.com/article/10.1007/s11814-012-0032-1
31. J. Zhang, Y. Zhao, X. Guan, R. E. Stark, D. L. Akins, J. Lee. Formation of graphene oxide nanocomposites from carbon dioxide using ammonia borane, J. Phys. Chem. C 2012, 116, 2629-2644.
https://pubs.acs.org/doi/full/10.1021/jp210295e
32. X. Ran, J. Zhang, Y. Zhao, D. L. Akins, J. Lee. Rapid release of 1.5 equivalents of hydrogen from CO2-treated ammonia borane, Int. J. Hydrogen Energy 2012, 37, 3344-3349.
https://linkinghub.elsevier.com/retrieve/pii/S036031991102547X
33. J. Zhang, Y. Zhao, D. L. Akins, J. Lee. Calorimetric and microscopic studies on noncatalytic hydro-thermolysis of ammonia borane, Ind. Eng. Chem. Res. 2011, 50, 10407-10413.
https://pubs.acs.org/doi/10.1021/ie200878u
34. Y. Zhao, J. Zhang, D. L. Akins, J. Lee. Effect of composition on dehydrogenation of mesoporous silica-ammonia borane nanocomposites, Ind. Eng. Chem. Res. 2011, 50, 10024-10028.
https://pubs.acs.org/doi/10.1021/ie200330x
35. J. Zhang, Y. Zhao, D. L. Akins, J. W. Lee, CO2-enhanced thermolytic H2 release from ammonia borane, J. Phys. Chem. C 2011, 115, 8386-8392.
https://pubs.acs.org/doi/10.1021/jp200049y
36. J. Zhang, Y. Zhao, D. L. Akins, J. Lee. Thermal decomposition and spectroscopic studies of preheated ammonia borane, J. Phys. Chem. C 2010, 114, 19529-19534.
https://pubs.acs.org/doi/10.1021/jp105014t
37. J. Zhang, J. Salera, J. Lee. Methane enclathration with sodium dodecyl sulfate: Effect of cyclopentane and two salts on formation kinetics, Ind. Eng. Chem. Res. 2010, 49, 8267-8270.
https://pubs.acs.org/doi/10.1021/ie100759p
38. C. Lo, J. Zhang, P. Somasundaran, S. Lu, A. Couzis, J. Lee. Adsorption of cationic and anionic surfactants on cyclopentane hydrates, J. Phys. Chem. C 2010, 114, 13385-13389.
https://pubs.acs.org/doi/full/10.1021/jp102846d
39. C. Lo, J. Zhang, P. Somasundaran, J. Lee. Raman spectroscopic studies of surfactant effect on the water structure around hydrate guest molecules, J. Phys. Chem. Lett. 2010, 1, 2767-2769.
https://pubs.acs.org/doi/10.1021/jz1009967
40. C. Jones, J. Zhang, J. Lee. Isotope effect on eutectic and hydrate melting temperatures, J. Thermodynamics 2010, 2010, 583041.
https://www.hindawi.com/journals/jther/2010/583041/
41. J. Zhang, C. Lo, P. Somasundaran, J. Lee, Competitive adsorption between SDS and carbonate on tetrahydrofuran hydrates, J. Colloid Interface Sci. 2010, 341, 286-288.
https://www.sciencedirect.com/science/article/pii/S0021979709012673
42. J. Zhang, C. Lo, A. Couzis, P. Somasundaran, J. Wu, J. Lee. Adsorption of kinetic inhibitors on clathrate hydrates, J. Phys. Chem. C 2009, 113, 17418-17420.
https://pubs.acs.org/doi/10.1021/jp907796d
43. J. Zhang, P. Yedlapalli, J. Lee. Thermodynamic analysis of hydrate-based pre-combustion capture of CO2, Chem. Eng. Sci. 2009, 64, 4732-4736.
https://www.sciencedirect.com/science/article/pii/S0009250909003054
44. J. Zhang, J. Lee. Effect of sodium dodecyl sulfate on supercooling point of ice and clathrate hydrates, Energy & Fuels 2009, 23, 3045-3047.
https://pubs.acs.org/doi/10.1021/ef900122n
45. J. Zhang, J. Lee. Enhanced kinetics of CO2 hydrate formation under static conditions, Ind. Eng. Chem. Res. 2009, 48, 5934-5942.
https://pubs.acs.org/doi/10.1021/ie801170u
46. J. Zhang, J. Lee. Inhibition effect of surfactants on CO2 enclathration with cyclopentane in an unstirred batch reactor, Ind. Eng. Chem. Res. 2009, 48, 4703-4709.
https://pubs.acs.org/doi/10.1021/ie8019328
47. J. Zhang, J. Lee. Equilibrium of cyclopentane + CO2 and cyclopentane + H2 hydrates, J. Chem. Eng. Data 2009, 54, 659-661.
https://pubs.acs.org/doi/10.1021/je800219k
48. C. Lo, J. Zhang, P. Somasundaran, S. Lu, A. Couzis, J. Lee. Adsorption of surfactants on two different hydrates, Langmuir 2009, 24, 12723-12726.
https://pubs.acs.org/doi/10.1021/la802362m
49. J. Zhang, C. Lo, P. Somasundaran, A. Couzis, J. Lee. Adsorption of sodium dodecyl sulfate at THF hydrate/liquid interface, J. Phys. Chem. C 2008, 112, 12381-12385.
https://pubs.acs.org/doi/10.1021/jp801963c
50. J. Zhang, S. Lee, J. Lee. Reply to comments by J.-N. Jaubert and S. Vitu on J. Chem. Eng. Data 2008, 53, 1321-1324, J. Chem. Eng. Data 2008, 53, 2002-2002.
https://pubs.acs.org/doi/10.1021/je8003518
51. J. Zhang, S. Lee, J. Lee. Solubility of CO2, N2 and CO2 + N2 gas mixtures in isooctane, J. Chem. Eng. Data 2008, 53, 1321-1324.
https://pubs.acs.org/doi/full/10.1021/je800053f
52. J. Zhang, R. Stanforth, S. O. Pehkonen. Irreversible adsorption of methyl arsenic, arsenate, and phosphate onto goethite in arsenic and phosphate binary systems, J. Colloid Interface Sci. 2008, 317, 35-43.
https://www.sciencedirect.com/science/article/pii/S0021979707013331
53. J. Zhang, R. Stanforth, S. O. Pehkonen. Proton-arsenic adsorption ratios and zeta potential measurements: Implications for protonation of hydroxyls on the goethite surface, J. Colloid Interface Sci. 2007, 315, 13-20.
https://www.sciencedirect.com/science/article/pii/S0021979707008727
54. J. Zhang, S. Lee, J. Lee. Does SDS form micelles at methane hydrate-forming conditions? J. Colloid Interface Sci. 2007, 315, 313-318.
https://www.sciencedirect.com/science/article/pii/S0021979707008016
55. J. Zhang, S. Lee, J. Lee. Kinetics of methane hydrate formation from SDS solution, Ind. Eng. Chem. Res. 2007, 46, 6353-6359.
https://pubs.acs.org/doi/full/10.1021/ie070627r?src=recsys
56. J. Zhang, S. Lee, J. Lee. Solubility of sodium dodecyl sulfate near propane and carbon dioxide hydrate-forming conditions, J. Chem. Eng. Data 2007, 52, 2480-2483.
https://pubs.acs.org/doi/full/10.1021/je700427t
57. J. Zhang, R. Stanforth, S. O. Pehkonen, Effect of replacing a hydroxyl group with a methyl group on arsenic (V) species adsorption on goethite (apha-FeOOH), J. Colloid Interface Sci. 2007, 306, 16-21.
https://www.sciencedirect.com/science/article/pii/S002197970600909X
58. S. Lee, J. Zhang, R. Mehta, T. Woo, J. Lee. Methane hydrate equilibrium and formation kinetics in the presence of an anionic surfactant, J. Phys. Chem. C 2007,111, 4734-4739.
https://pubs.acs.org/doi/10.1021/jp0667590
59. J. Zhang, R. Stanforth. Slow adsorption reaction between arsenic species and goethite (apha-FeOOH): diffusion or heterogeneous surface reaction control, Langmuir 2005, 21, 2895-2901.
https://pubs.acs.org/doi/full/10.1021/la047636e
60. L. Zhou, J. Zhang, Y. Zhou. A simple isotherm equation for modeling the adsorption equilibria on porous solids over wide temperature ranges, Langmuir 2001, 17, 5503-5507.