论文与专利
1. 论文情况(#代表共同第一作者、*代表通讯作者)
[100] S. H. Li and G. K. Xu*, Nonlinear power-law creep of cell cortex: a minimal model. Applied Physics Letters (In Revision)
[99] J. T. Hang, H. Gao*, and G. K. Xu*, Characteristic frequencies of localized stress relaxation in scaling-law rheology of living cells. (Submitted)
[98] S. He, X. Yin, D. Liang, Z. Chang, and G. K. Xu*, Spontaneous Oscillations in Collective Bacteria: Insights from a Self-Propelled Rods Model. Physical Review E (In Revision)
[97] H. Wang, J. T. Hang*, and G. K. Xu*, Active curling of epithelial monolayers dominated by actin cytoskeleton mechanics. Physical Review E (Accepted)
[96] Z. Chang, Y. Zhou, L. Dong, L. R. Qiao, H. Yang*, and G. K. Xu*, Deciphering the complex mechanics of atherosclerotic plaques: a hybrid hierarchical theory-microrheology approach. Acta Biomaterialia, (Accepted).
[95] 张立元, 杨锦波, 李澳, 杨庆凯, 徐光魁, 张拉整体球形机器人构型设计与控制研究进展. 机械工程学报, 2024, 60, 1-18.
[94] Z. Chang, C.-H. Peng, K.-J. Chen,* W. Liu, and G. K. Xu*, Viscoelastic mechanical signature-based machine learning for assessment of liver fibrosis and its regression. International Journal of Applied Mechanics, 2024, 2450082.
[93] H. Zhang, J. T. Hang, Z. Chang, S. Yu, H. Yang, and G. K. Xu*, Scaling-law mechanical marker for liver fibrosis diagnosis and drug screening through machine learning. Frontiers in Bioengineering and Biotechnology, 2024, DOI 10.3389/fbioe.2024.1404508.
[92] Y. Qin, H. Zhang, Z. W. Qiu, L. Liu, H. Yang, J. T. Hang, D. Wei, and G. K. Xu*, A Two-Way FSI Model for Pathologic Respiratory Processes with Precisely Structured and Flexible Upper Airway. Acta Mechanica Solida Sinica, 2024, DOI: 10.1007/s10338-024-00510-7.
[91] W. Zhou, X. Yin, S. Xie, F. Ji, Z. Chang*, and G. K. Xu*, A tensegrity-based mechanochemical model for capturing cell oscillation and reorientation. Journal of Applied Physics, 2024, 136, 074701.
[90] G. Shi, Z. Chang, P. Zhang, X. Zou, X. Zhenng, X. Liu, J. Yan, H. Xu, Z. Tian, N. Zhang, N. Cui, L. Sun, G. K. Xu*, and H. Yang*. Heterogeneous stiffness of the bone marrow microenvironment regulates the fate decision of haematopoietic stem and progenitor cells. Cell Proliferation, 2024, e13715.
[89] X. Yue, X. Yin, Z. Sun, L. Liu, G. K. Xu, L. Y. Zhang, and C. Cao, Flexible, lightweight, tunable robotic arms enabled by X-tensegrity inspired structures. Composite Structures, 2024, 344, 118331.
[88] X. Yin, D. Liang, S. Q. He, L. Y. Zhang, and G. K. Xu*, Local mechanical modulation-driven evagination in invaginated epithelia. Nano Letters, 2024, 24, 7069−7076.
[87] Z. Chang, L. Li, Z. J. Shi, W. Liu*, and G. K. Xu*, Beyond stiffness: Multiscale viscoelastic features as biomechanical markers for assessing cell types and states. Biophysical Journal, 2024, 123, 1–13.
[86] Z. Chang, C.-H. Peng, K.-J. Chen,* and G. K. Xu*, Enhancing liver fibrosis diagnosis and treatment assessment: a novel biomechanical markers-based machine learning approach. Physics in Medicine & Biology, 2024, 69, 115046.
[85] J. T. Hang, H. Wang, and G. K. Xu*, Scaling-law variance and invariance of cell plasticity. JMPS, 2024, 187, 105642.
[84] J. T. Hang, H. Wang, B. C. Wang, and G. K. Xu*, Anisotropic power-law viscoelasticity of living cells is dominated by cytoskeletal network structure. Acta Biomaterialia, 2024, 180, 197-205.
[83] W. H. Zhou, L. R. Qiao, S. J. Xie, Z. Chang, X. Yin, and G. K. Xu, Mechanical guidance to self-organization and pattern formation of stem cells. Soft Matter, 2024, DOI: 10.1039/d4sm00172a
[82] X. Yin, Y. Q. Liu, L. Y. Zhang, D. Liang, and G. K. Xu*, Emergence, pattern, and frequency of spontaneous waves in spreading epithelial monolayers. Nano Letters, 2024, 24, 3631-3637.
[81] H. Wang, Y. Liu, J. T. Hang, G. K. Xu*, and X. Q. Feng*, Dynamic high-order buckling and spontaneous recovery of active epithelial tissues, JMPS 2024, 183. 105496.
[80] S Liu#, H. Yang#, G. K. Xu#, J. Wu, R. Tao, M. Wang, R. He, Y. Han, G. M. Genin, T. Lu, and F. Xu, Snap-through instability of adherent cells under hydrostatic pressure, JMPS 2024, 182, 105476.
[79] S. H. Li and G. K. Xu*, Topological mechanism in the nonlinear power-law relaxation of cell cortex, Physical Review E 2023, 108, 064408.
[78] Z. Chang, L. Zhang, J. T. Hang, W. Liu*, and G. K. Xu*, Viscoelastic multiscale mechanical indexes for assessing liver fibrosis and treatment outcomes. Nano Letters 2023, 23 9618-9625.
[77] Z. Chang, J. Zhang, Y. Liu, H. Gao*, and G. K. Xu*, New mechanical markers for tracking the progression of myocardial infarction. Nano Letters 2023, 23, 7350-7357.
[76] 秦源, 陈茜, 魏东, 任晓勇, 徐光魁*, 气流作用下气道组织变形的流固耦合研究. 力学学报 2023, 55, 1-10.
[75] J. T. Hang, W. Zhao*, L. Liu, and G. K. Xu*, Damage sensitivity studies of composite honeycomb sandwich structures under in-plane compression and 4-point bending: experiments and numerical simulations. Composite Structures, 2023, 321, 117279.
[74] C. B. Wang and G. K. Xu*, Collective Migration of Cells in Geometric Spaces: Intrinsic Correlation Length Racing against Extrinsic Confinement Size..JMPS, 2023, 177, 105327.
[73] C. B. Wang, Y. Lin, and G. K. Xu*, Size-induced motion mode transitions in collective cell invasion toward free spaces. Soft Matter, 2023, 19, 4526.
[72] 张永正,刘磊,刘琦,徐光魁. C/SiC 编织型复合材料热/力学性能的多尺度预测. 应用数学和力学 2023, 44, 1157-1171.
[71] D. Liang, J. T. Hang, and G. K. Xu*, A Structure-based Cellular Model Reveals Power-law Rheology and Stiffening of Living Cells under Shear Stress. Acta Mechanica Sinica 2023, 39, 623129.
[70] S. H. Li, H. Gao*, and G. K. Xu*, Network dynamics of the nonlinear power-law relaxation of cell cortex. Biophysical Journal 2022, 121, 4091-4098.
[69] X. Yin, B. C. Wang, L. Liu, L. Y. Zhang*, and G. K. Xu*, A structural stiffness matrix-based computational mechanics method of epithelial monolayers. JMPS, 2022, 169, 105077.
[68] J. T. Hang and G. K. Xu*, Stiffening and softening in the power-law rheological behaviors of cells. JMPS 2022, 167, 104989.
[67] B. Tang, F. Sun, X. Wei, G. K. Xu, and Y. Lin, Defect size snd cross-linker properties controlled fracture of biopolymer networks. Extreme Mechanics Letters 2022, 54, 101743
[66] B. C. Wang and G. K. Xu*, Cell Chirality Regulates Coherent Angular Motion on Small Circular Substrates. Biophysical Journal 2022, 121, 1931-1939.(封面文章)
[65] J. T. Hang, G. K. Xu*, and H. Gao*, Frequency-dependent transition in power-law rheological behavior of living cells. Science Advances 2022, 8, eabn6093.
[64] H. Wang, J. T. Hang, Z. Chang, and G. K. Xu*, Static and dynamic mechanics of cell monolayers: A multi-scale structural model. Acta Mechanica Sinica 2022, 38, 222006.
[63] 曹永亮, 李海泉, 李澳, 殷旭, 颜欣心, 张立元*, 徐光魁*. 仿鲹科张拉整体式机器鱼的结构设计与动力学分析. 科学通报 2022, 67, 4251.
[62] L.Y. Zhang*, Y. Zheng, X. Yin, S. Zhang, H. Q. Li, and G. K. Xu*, A tensegrity-based morphing module for assembling various deployable structures. Mechanism and Machine Theory 2022, 173, 104870.
[61] J. Yan*, X. Zheng, W. You, W. He*, and G. K. Xu*, A Bionic-Homodimerization Strategy for Optimizing Modulators of Protein–Protein Interactions: From Statistical Mechanics Theory to Potential Clinical Translation. Advanced Science 2022, 2105179, 1-9. (ESI高被引论文)
[60] S. S. He, X. Yin, L. Y. Zhang*, Z. Y. Gao, and G. K. Xu*, Directional snapping instability in a bistable tensegrity under uniaxial loads. Composite Structures, 2022, 283, 115153.
[59] P. Zhang, L. Xu, J. Gao, G. K. Xu, Y. Song, G. Li, J. Ren, Y. Zhang, C. Yang, Y. Zhang, R. Xie, N. Zhang, and H. Yang, 3D collagen matrices modulate the transcriptional trajectory of bone marrow hematopoietic progenitors into macrophage lineage commitment. Bioactive Materials, 2022, 10, 255-268.
[58] J. T. Hang, Y. Kang, G. K. Xu*, and H. Gao*, A hierarchical cellular structural model to unravel the universal power-law rheological behavior of living cells . Nature Communications 2021, 12, 6067.
[57] 钟楚晗, 徐光魁*, 分子刚度对膜锚定受体⁃配体结合动力学影响的 理论与模拟研究. 应用数学和力学 2021, 10, 1091.
[56] L. Y. Zhang*, J. H. Jiang, K. Wei, X. Yin, G. K. Xu*, and J. Zhang, Self-equilibrium and super-stability of rhombic truncated regular tetrahedral and cubic tensegrities using symmetry-adapted force-density matrix method. International Journal of Solids and Structures 2021, 233, 111215.
[55] L. Y. Zhang*, X. Yin, J. Yang, A. Li, and G. K. Xu*, Multilevel structural defects-induced elastic wave tunability and localization of a tensegrity metamaterial. Composites Science and Technology 2021, 207, 108740-
[54] Y. Liu#, L. Y. Zhang#, B. C. Wang, G. K. Xu*, and X. Q. Feng, Why are isolated and collective cells greatly different in stiffness? JMPS, 2021, 147, 104280.
[53] S. Xiao, S. Sun, G. K. Xu, and X. Q. Feng. A finite-strain micromechanical model for the hyperelasticity of tendons and ligaments with crimped fibers. Mechanics of Materials, 2021, 160, 103955.
[52] Y. Liu, J. Cheng, H. Yang, and G. K. Xu*, Rotational constraint contributes to collective cell durotaxis. Applied Physics Letters, 2020, 117, 213702.
[51] Z. Y. Liu, B. Li, Z. L. Zhao, G. K. Xu, X. Q. Feng, and H. Gao, Mesoscopic dynamic model of epithelial cell division with cell-cell junction effects. Physical Review E , 2020, 102, 012405.
[50] X. Yin, S. Zhang, G. K. Xu, L. Y. Zhang, and Z. Y. Gao, Bandgap characteristics of a tensegrity metamaterial chain with defects. Extreme Mechanics Letters, 2020, 36, 100667.
[49] Y. Qin,# Y. Li,# L. Y. Zhang, and G. K. Xu*, Stochastic fluctuation-induced cell polarization on elastic substrates: A cytoskeleton-based mechanical model. JMPS, 2020, 137, 103872.
[48] X. Yin, Y. Li, L. Y. Zhang*, and G. K. Xu*, Constructing various simple polygonal tensegrities by directly or recursively adding bars. Composite Structures, 2020, 234, 111693.
[47] X. Yin, Z. Gao, S. Zhang, L. Y. Zhang*, and G. K. Xu*, Truncated regular octahedral tensegrity-based mechanical metamaterial with tunable and programmable Poisson’s ratio. International Journal of Mechanical Sciences, 2020, 167, 105285.
[46] Z. L. Zheng, J. Jin, J. C. Dong, B. Li, G. K. Xu, J. F. Li, and D. Shchukin, Unusual Sonochemical Assembly between Carbon Allotropes for High Strain-Tolerant Conductive Nanocomposites. ACS Nano, 2019, 13, 12062–12069.
[45] Y. Liu, G. K. Xu*, L. Y. Zhang, and H. Gao, Stress-driven cell extrusion can maintain homeostatic cell density in response to overcrowding. Soft Matter, 2019, 15, 8441-8449. (封面文章)
[44] L. Y. Zhang*, Y. Li,, G. K. Xu*, and X. Q. Feng, Enumeration–screening method for the design of simple polygonal tensegrities, Proceedings of the Royal Society A, 2019, 475, 20180812.
[43] S. H. Li and G. K. Xu*, Size dependent mechanics of the adherens junction mediated by cooperative trans and cis bindings. Journal of Applied Mechanics, 2019, 86, 071011.
[42] P. C. Chen, S. Z. Lin,, G. K. Xu, B. Li, and X. Q. Feng, Three-dimensional collective cell motions in an acinus-like lumen. Journal of Biomechanics, 2019, 84, 234–242.
[41] L. Y. Zhang*, S. X. Zhu, X. F. Chen, and G. K. Xu*. Analytical form-finding for highly symmetric and super-stable configurations of rhombic truncated regular polyhedral tensegrities. Journal of Applied Mechanics 2019, 86, 031006.
[40] S. Z. Lin, S. Ye,, G. K. Xu, B. Li, and X. Q. Feng, Dynamic migration modes of collective cells. Biophysical Journal 2018, 115, 1826–1835.
[39] Y. Ding, J. Wang, G. K. Xu*, and G. F. Wang*, Are elastic moduli of biological cells depth dependent or not? Another explanation using a contact mechanics model with surface tension. Soft Matter 2018, 14, 7534–7541.
[38] L. Y. Zhang*, S. X. Zhu, S. X. Li, and G. K. Xu*, Analytical form-finding of tensegrities using determinant of force-density matrix. Composite Structures 2018, 189, 87–98.
[37] Y. Li, Y. Hong, G. K. Xu, S. Liu, Q. Shi, D. Tang, H. Yang, G. M. Genin, T. J. Lu, and F. Xu, Non-contact tensile viscoelastic characterization of microscale biological materials. Acta Mechanica Sinica 2018, 34, 589–599.
[36] L. Li, J. L. Hu, G. K. Xu and F. Song, Binding constant of cell adhesion receptors and substrate-immobilized ligands depends on the distribution of ligands. Physical Review E 2018, 97, 012405.
[35] G. K. Xu*, X. Q. Feng, and H. Gao, Orientations of Cells on Compliant Substrates under Biaxial Stretches: A Theoretical Study. Biophysical Journal 2018, 114, 701–710.
[34] L. Y. Zhang*, S. X. Li, S. X. Zhu, B. Y. Zhang, and G. K. Xu*, Automatically assembled large-scale tensegrities by truncated regular polyhedral and prismatic elementary cells. Composite Structures 2018, 184, 30–40.
[33] Z. D. Sha, C. M. She, G. K. Xu, Q. X. Pei, Z. S. Liu, T. J. Wang, H. Gao, Metallic glass based chiral nanolattice: light-weight, auxeticity, and superior mechanical properties. Materials Today 2017, 20, 569–576.
[32] Z. L. Zhao, Z. Y. Liu, J. Du, G. K. Xu, and X. Q. Feng, A dynamic biochemomechanical model of geometry-constrained cell spreading. Biophysical Journal 2017, 112, 2377–2386. (封面文章)
[31] Y. Ding, G. K. Xu*, and G. F. Wang*, On the determination of elastic moduli of cells by AFM based indentation. Scientific Reports 2017, 7, 45575.
[30] J. Qian, J. Lin, G. K. Xu, Y. Lin, and H. Gao, Thermally assisted peeling of an elastic strip in adhesion with a substrate via molecular bonds Journal of the Mechanics and Physics of Solids 2017, 101, 197–208.
[29] Z. L. Zheng, Z. Chang, G. K. Xu, F. McBride, A. Ho, Z. Zhuola, M. Michailidis, W. Li, R. Raval, R. Akhtar, and D. Shchukin, Microencapsulated phase change materials in solar-thermal conversion systems: understanding geometry-dependent heating efficiency and system reliability. ACS Nano 2017, 11, 721–729.
[28] S. Z. Lin, B. Li, G. K. Xu, and X. Q. Feng, Collective dynamics of cancer cells confined in a confluent monolayer of normal cells. Journal of Biomechanics, 2017, 52, 140–147.
[27] L. Li, G. K. Xu, and F. Song, The impact of lipid raft on the T-cell-receptor and peptide-major-histocompatibility-complex interactions under different measurement conditions. Physical Review E 2017, 95, 012403.
[26] G. K. Xu*, B. Li, X. Q. Feng*, and H. Gao, A tensegrity model of cell reorientation on cyclically stretched substrates. Biophysical Journal 2016, 111, 1478–1486.
[25] T. R. Weikl, J. Hu., G. K. Xu, and R. Lipowsky, Binding equilibrium and kinetics of membrane-anchored receptors and ligands in cell adhesion: insights from computational model systems and theory. Cell Adhesion & Migration 2016, 10, 576–589.
[24] G. K. Xu*, J. Qian, and J. Hu, The glycocalyx promotes cooperative binding and clustering of adhesion receptors. Soft Matter 2016, 12, 4572–4583.
[23] Z. Zheng, J. Jin, G. K. Xu*, J. Zou, U. Wais, A. Beckett, T. Heil, S. Higgins, L. Guan, Y. Wang, and D. Shchukin*. Highly stable and conductive microcapsules for enhancement of Joule heating performance. ACS Nano, 2016, 10, 4695–4703.
[22] G. K. Xu*, Z. Liu, X. Q. Feng*, and H. Gao, Tension-compression asymmetry in the binding affinity of membrane-anchored receptors and ligands. Physical Review E, 2016, 93, 032411.
[21] G. K. Xu*, Y. Liu, and Z. L. Zheng, Oriented cell division affects the global stress and cell packing geometry of a monolayer under stretch. Journal of Biomechanics, 2016, 49, 401–407
[20] G. K. Xu*, Y. Liu, and B. Li, How do changes at the cell level affect the mechanical properties of epithelial monolayers? Soft Matter 2015, 11, 8782–8788.
[19] G. K. Xu, J. Hu, R. Lipowsky, and T. R. Weikl, Binding constants of membrane-anchored receptors and ligands: a general theory corroborated by Monte Carlo simulations. Journal of Chemical Physics, 2015, 143, 243136.
[18] J. Hu., G. K. Xu, R. Lipowsky, and T. R. Weikl, Binding kinetics of membrane-anchored receptors and ligands: molecular dynamics simulations and theory. Journal of Chemical Physics, 2015, 143, 243137.
[17] Z. L. Zheng, X. Huang, M. Schenderlein, H. Mohwald, G. K. Xu*, and D.Shchukin*, Bioinspired nanovalves with selective permeability and pH sensitivity. Nanoscale, 2015, 7, 2409–2416.
[16] L. Y.Zhang* and G. K. Xu*, Negative stiffness behaviors emerging in elastic instabilities of prismatic tensegrities under torsional loading. International Journal of Mechanical Science, 2015, 103, 189–198.
[15] G. K. Xu, C. Yang, J. Du, and X. Q. Feng, Integrin activation and internalization mediated by extracellular matrix elasticity: a biomechanical model. Journal of Biomechanics, 2014, 47, 1479–1484.
[14] X. Y. Sun, G. K. Xu, Y. J. Xu, and X. Q. Feng, Interfacial effects on mechanical properties of interpenetrating phase nanocomposites. Micro & Nano Lett. 2014, 9, 697–701.
[13] X. Y. Sun, G. K. Xu, X. Li, X. Q. Feng, and H. Gao, Mechanical properties and scaling laws of nanoporous gold. Journal of Applied Physics, 2013, 113, 023505.
[12] B. Li, G. K. Xu, and X. Q. Feng, Tissue-growth model for the swelling analysis of core-shell hydrogels. Soft Materials, 2013, 11, 117–124.
[11] G. K. Xu, X. Q. Feng, B. Li, and H. Gao, Controlled release and assembly of drug nanoparticles via pH-responsive polymeric micelles: a theoretical study. Journal of Physical Chemistry B, 2012, 116, 6003–6009.
[10] A. R. Xu, M. F. Yao, G. K. Xu, J. Y. Ying, W. C. Ma, B. Li, and Y. Jin, A physical model for the size-dependent cellular uptake of nanoparticles modified with cationic surfactants. International Journal of Nanomedicine, 2012, 7, 3547–3554.
[9] W. H. Xie, G. K. Xu, and X. Q. Feng, Self-assembly of lipids and nanoparticls in aqueous solution: self-consistent field simulations. Theoretial & Applied Mechanics Letters, 2012, 2, 014004.
[8] G. K. Xu, W. Lu, X. Q. Feng, and S. W. Yu, Self-assembly of organic-inorganic nanoparticles with nacre-like hierarchical structures. Soft Matter 2011, 7, 4828–4832.
[7] G. K. Xu and X. Q. Feng, Position transitions of polymer-grafted nanoparticles in diblock-copolymer nanocomposites. Express Polymer Letters, 2011, 5, 374–383.
[6] G. K. Xu, X. Q. Feng, and S. W. Yu, Controllable nanostructural transition in grafted nanoparticle-block copolymer composites. Nano Research, 2010, 3, 356–362.
[5] Y. Li, G. K. Xu, B. Li, and X. Q. Feng, A molecular mechanisms-based biophysical model for two-phase cell spreading. Applied Physics Letters, 2010, 96, 043703.
[4] G. K. Xu, X. Q. Feng, and Y. Li, Self-assembled nanostructures of homopolymer and diblock copolymer blends in a selective solvent. Journal of Physical Chemistry B, 2010, 114, 1257–1263.
[3] G. K. Xu, Y. Li, B. Li, X. Q. Feng, and H. Gao, Self-assembled lipid nanostructures encapsulating nanoparticles in aqueous solution. Soft Matter, 2009, 5, 3977–3983.
[2] G. K. Xu, X. Q. Feng, H. P. Zhao, and B. Li, Theoretical study of the competition between cell-cell and cell-matrix adhesions. Physical Review E, 2009, 80, 011921.
[1] B. Li, Y. Li, G. K. Xu, and X. Q. Feng, Surface patterning of soft polymer film-coated cylinders via an electric field. Journal of Physics: Condensed Matter, 2009, 21, 445006.
2. 专利情况
发明已授权5项:
1 张立元, 李悦, 徐光魁, 冯西桥. 一种平面型张拉整体结构拓扑设计方法. ZL201811362275.4, 授权 2022-12-16
2 张立元, 刘龙岳, 徐光魁, 殷旭, 王朋飞. 一种棱柱状张拉整体式准零刚度隔振器. ZL202010494535.4, 授权 2021-07-02
3 张立元, 殷旭, 徐光魁, 郜志英. 一种可调频的张拉整体隔振器. ZL201910318884.8, 授权 2020-03-17
4 畅茁, 乔琳茹, 徐光魁, 杭久涛. 一种生物组织微纳米流变学特性的测试装置及方法. ZL202211418058.9, 授权 2023-08-08
5 张立元,岳晓辉,孙紫燕,李澳,李海泉,徐光魁. 一种变刚度张拉整体式髋关节. ZL 202311335037.5, 授权 2024-03-26
发明公开申请3项:
1 徐光魁, 殷旭, 王必聪. 一种基于结构刚度矩阵的单层细胞力学计算方法及系统. CN202211212889.0, 申请 2022-09-30
2 畅茁, 徐光魁, 杭久涛. 一种粘弹性体的微纳米力学性质的检测方法和设备. CN202211135785.4, 申请 2022-09-19
3 张立元, 李澳, 殷旭, 刘龙岳, 曹永亮, 李海泉, 徐光魁. 一种张拉整体式柔性机械臂. CN202111416661.9, 申请 2021-11-25