International Journal Publications

  1. 唐桂华, 范元鸿, 李小龙, 杨丹蕾. 超临界二氧化碳布雷顿循环发电及储能一体化基础, 机械工业出版社, 2024.
  2. Wang ZH, He CB, Hu Yang, Tang GH. High-stability temperature control and frequency-domain analysis of sandwich-like insulation design based on phase change materials for satellite thermal management, SCIENCE CHINA Technological Sciences, 2024, 67:   https://doi.org/10.1007/s11431-023-2597-y
  3. Ma Yuan, Tang GH, Hu Yang. Modelling of hollow-fiber doping in silica aerogel composites for radiative and conductive insulation under high temperatures, Applied Thermal Engineering, 2024, 254: 123917. https://doi.org/10.1016/j.applthermaleng.2024.123917
  4. Jiang Jing, Lai YM, Sheng DC, Tang GH, Zhang MY, Niu Dong, Yu Fan. Two-dimensional bilayer ice in coexistence with three-dimensional ice without confinement, Nature Communications, 2024,15: 5762.  https://doi.org/10.1038/s41467-024-50187-2  
  5. Huang MQ, Zhao YW, Tang GH, Sun Qie, Yang MY, Du Mu. Toward improved optical transparency of silica nanofibrous aerogels, Solar Energy Materials and Solar Cells, 2024, 276: 113032.  https://doi.org/10.1016/j.solmat.2024.113032  
  6. Huang WS, Ning HY, Li Nan, Tang GH, Ma Yuan, Li Zhe, Nan XY, Li XH. Thermal-hydraulic performance of TPMS-based regenerators in combined cycle aero-engine, Applied Thermal Engineering, 2024, 250: 123510. https://doi.org/10.1016/j.applthermaleng.2024.123510
  7. Nie YN, Tang GH, Li YF, Zhang Min, Zhao Xin. Diameter-dependent ultra-high thermoelectric performance of ZnO nanowires, Chinese Physics B, 2024, 33: 047301.  https://doi.org/10.1088/1674-1056/ad11e5
  8. Wu KF, Zhang Hu, Tang GH. Experimental investigation of the anisotropic thermal conductivity of C/SiC composite thin slab, Chinese Physics Letters, 2024, 41: 034401.  https://doi.org/10.1088/0256-307X/41/3/034401
  9. Miao YZ, Tang GH. Thermal protection characteristics of non-enclosed thermal cloak(非封闭式热斗篷热防护特性), Acta Physica Sinica(物理学报), 2024, 73: 034401. https://doi.org/10.7498/aps.73.20231262
  10. Okafor Peter-Ebuka, Tang GH. Gas-solid coupling in a randomly distributed ceramic nanofibrous aerogel, International Journal of Thermal Sciences, 2024, 200: 108988. https://doi.org/10.1016/j.ijthermalsci.2024.108988
  11. Huang JC, Zhang XK, Yu XY, Tang GH, Wang XY, Du Mu. Scalable self-adaptive radiative cooling film through VO2-based switchable core–shell particles, Renewable Energy, 2024, 224: 120208.  https://doi.org/10.1016/j.renene.2024.120208
  12. Yao Peng, Yang Rui, Sun Qie, Tang GH, Liu XY, Pu JH, Du Mu. Transparent photothermal films with high optical selectivity for anti/de-icing, Applied Thermal Engineering, 2024, 242: 122490.  https://doi.org/10.1016/j.applthermaleng.2024.122490
  13. Li XL, Tang GH, Yang DL, Fan YH. Performance evaluation of heater and recuperator in Brayton cycles for power and energy storage, Applied Thermal Engineering, 2024, 244: 122739.  https://doi.org/10.1016/j.applthermaleng.2024.122739
  14. Zhang GD, Li GX, Li LF, Tang GH. Experimental and numerical study on liquid film cooling performance under heated wall condition, Applied Thermal Engineering, 2024, 239: 122147. https://doi.org/10.1016/j.applthermaleng.2023.122147
  15. Pu JH, Yu XY, Zhao YW, Tang GH, Ren XJ, Du Mu. Dynamic aerogel window with switchable solar transmittance and low haze, Energy, 2023, 285:129437. https://doi.org/10.1016/j.energy.2023.129437
  16. Okafor Peter-Ebuka, He CB, Tang GH. Finite-difference time-domain study of hollow Zirconium dioxide nanofibrous aerogel composite for thermal insulation under harsh environments, International Journal of Thermal Sciences, 2023, 194: 108599.  https://doi.org/10.1016/j.ijthermalsci.2023.108599
  17. Li XL, Yu XY, Liu PT, Fan YH, Yang DL, Tang GH. S-CO2 flow in vertical tubes of large-diameter: Experimental evaluation and numerical exploration for heat transfer deterioration and prevention, International Journal of Heat and Mass Transfer, 2023, 216: 124563.  https://doi.org/10.1016/j.ijheatmasstransfer.2023.124563
  18. Huang MQ, Tang GH, Si QL, Pu JH, Sun Qie, Du Mu. Plasmonic aerogel window with structural coloration for energy-efficient and sustainable building envelopes, Renewable Energy, 2023, 216: 119006.  https://doi.org/10.1016/j.renene.2023.119006
  19. Huang MQ, Tang GH, Ren XJ, Sun Qie, Du Mu. Effects of microstructure and moisture content on the radiative properties of porous films for radiative cooling, Solar Energy, 2023, 262: 111855.  https://doi.org/10.1016/j.solener.2023.111855
  20. Yang Ke, Huang MQ, Zhou RF, Cheng QL, Pu JH, Tang GH, Du Mu. Radiative properties of non-spherical opacifiers doped in silica aerogels for high-temperature thermal insulation, Thermal Science and Engineering Progress, 2023, 43: 101963.  https://doi.org/10.1016/j.tsep.2023.101963
  21. Yang DL, Tang GH, Sheng Q, Li XL, Fan YH, He YL, Luo KH. Effects of multiple insufficient charging and discharging on compressed carbon dioxide energy storage, Energy 2023, 278: 127901.  https://doi.org/10.1016/j.energy.2023.127901
  22. Wang ZH, Ma YJ, Tang GH, Zhang Hu, Ji F, Sheng Q. Integration of thermal insulation and thermoelectric conversion embedded with phase change materials. Energy, 2023, 278: 127784.  https://doi.org/10.1016/j.energy.2023.127784
  23. Okafor Peter-Ebuka, Tang GH. Study of effective thermal conductivity of a novel SiO2 aerogel composite for high-temperature thermal insulation. International Journal of Heat and Mass Transfer, 2023, 212: 124242.  https://doi.org/10.1016/j.ijheatmasstransfer.2023.124242
  24. Liu FQ, He CB, Jiang YG, Feng JZ, Li LJ, Tang GH, Feng Jian. Ultralight ceramic fiber aerogel for high-temperature thermal superinsulation. Nanomaterials, 2023, 13: 1305. https://doi.org/10.3390/nano13081305
  25. Wu KF, Cao TF, Li WB, Zhang Hu, Tang GH. Quantitative evaluation of the natural convection effect on thermal conductivity measurement with transient plane source method, Case Studies in Thermal Engineering, 2023, 45: 102933.  https://doi.org/10.1016/j.csite.2023.102933
  26. Li YF, Tang GH, Nie YN, Zhang Min, Zhao Xin, Shiomi Junichiro. Synergetic optimization of thermoelectric properties in SnSe film via manipulating Se vacancies, Journal of Alloys and Compounds, 2023, 943: 169115.  https://doi.org/10.1016/j.jallcom.2023.169115   
  27. Liu FQ, He CB, Jiang YG, Yang YP, Peng F, Liu LF, Men J, Feng JZ, Li LJ, Tang GH, Feng J. Carbon layer encapsulation strategy for designing multifunctional core-shell nanorod aerogels as high-temperature thermal superinsulators, Chemical Engineering Journal, 2023, 455: 140502.   https://doi.org/10.1016/j.cej.2022.140502
  28. Zhang GD, Li GX, Li LF, Tang GH. Thermal performance of MMH/NTO rocket thrust chamber based on pintle injector by using liquid film cooling, Applied Thermal Engineering, 2023, 223: 120035.  https://doi.org/10.1016/j.applthermaleng.2023.120035
  29. Wang TM, Si QL, Hu Yang, Tang GH, Chua KJ. Silica aerogel composited with both plasmonic nanoparticles and opacifiers for high-efficiency photo-thermal harvest, Energy, 2023, 265: 126371.  https://doi.org/10.1016/j.energy.2022.126371
  30. Zhang GD, Li GX, Xing RP, Zhang H, Tang GH. Numerical study of combustion and cooling performance of a gaseous oxygen and gaseous methane rocket combustor with the needle-bolt injector, Applied Thermal Engineering, 2023, 221: 119806.   https://doi.org/10.1016/j.applthermaleng.2022.119806
  31. Li Nan, Jiang Jing, Yang MY, Wang Hao, Ma Yuan, Li Zhe, Tang GH. Anti-icing mechanism of combined active ethanol spraying and passive surface wettability, Applied Thermal Engineering, 2023, 220: 119805.  https://doi.org/10.1016/j.applthermaleng.2022.119805
  32. Yu XY, Ren XJ, Wang XY, Tang GH, Du M. A high thermal stability core–shell aerogel structure for high-temperature solar thermal conversion, Composites Communications, 2023, 37: 101440.   https://doi.org/10.1016/j.coco.2022.101440
  33. Li XL, Li GX, Tang GH, Fan YH, Yang DL. A generalized thermal deviation factor to evaluate the comprehensive stress of tubes under non-uniform heating, Energy, 2023, 263: 125710. https://doi.org/10.1016/j.energy.2022.125710
  34. Yu XY, Huang MQ, Wang XY, Tang GH, Du Mu. Plasmon silica aerogel for improving high-temperature solar thermal conversion, Applied Thermal Engineering, 2023, 219:119419.   https://doi.org/10.1016/j.applthermaleng.2022.119419 
  35. Fan YH, Tang GH, Sheng Q, Li XL, Yang DL. S-CO2 cooling heat transfer mechanism based on pseudo-condensation and turbulent field analysis, Energy, 2023, 262: 125470. https://doi.org/10.1016/j.energy.2022.125470
  36. Guo Lin, Sheng Qiang, Kumar Satish, Liu ZG, Tang GH. Lubricant-induced tunability of self-driving nanodroplets on conical grooves, Journal of Molecular Liquids, 2023, 373: 121149.   https://doi.org/10.1016/j.molliq.2022.121149
  37. Yang MY, Tang GH, Sheng Q, Guo L, Zhang H. Atomic-level sintering mechanism of silica aerogels at high temperatures: structure evolution and solid thermal conductivity, International Journal of Heat and Mass Transfer, 2022, 199: 123456.  https://doi.org/10.1016/j.ijheatmasstransfer.2022.123456
  38. Yang Rui, Niu Dong, Pu JH, Tang GH, Wang, XY, Du Mu. Passive all-day freshwater harvesting through a transparent radiative cooling film, Applied Energy, 2022, 325: 119801. https://doi.org/10.1016/j.apenergy.2022.119801
  39. Yang DL, Tang GH, Luo KH, Fan YH, Li XL, Sheng Qiang. Integration and conversion of supercritical carbon dioxide coal-fired power cycle and high-efficiency energy storage cycle: Feasibility analysis based on a three-step strategy, Energy Conversion and Management, 2022, 269: 116074. https://doi.org/10.1016/j.enconman.2022.116074
  40. Fan YH, Tang GH, Li XL, Yang DL. General and unique issues at multiple scales for supercritical carbon dioxide power system: A review on recent advances, Energy Conversion and Management, 2022, 268: 115993.   https://doi.org/10.1016/j.enconman.2022.115993
  41. Yu XY, Huang MQ, Wang XY, Sun Q, Tang GH, Du Mu. Toward optical selectivity aerogels by plasmonic nanoparticles doping, Renewable Energy, 2022, 190: 741-751.   https://doi.org/10.1016/j.renene.2022.03.102 
  42. Jiang J, Sheng Q, Tang GH, Yang MY, Guo L. Anti-icing propagation and icephobicity of slippery liquid-infused porous surface for condensation frosting, International Journal of Heat and Mass Transfer, 2022, 190: 122730.   https://doi.org/10.1016/j.ijheatmasstransfer.2022.122730
  43. Huang MQ, Yu XY, Wan JC, Du Mu, Wang XY, Sun Qie, Tang GH. All-day effective radiative cooling by optically selective and thermally insulating mesoporous materials, Solar Energy, 2022, 235: 170-179.   https://doi.org/10.1016/j.solener.2022.02.015
  44. Li XL, Tang GH, Fan YH, Yang DL. A performance recovery coefficient for thermal-hydraulic evaluation of recuperator in supercritical carbon dioxide Brayton cycle, Energy Conversion and Management, 2022, 256: 115393.   https://doi.org/10.1016/j.enconman.2022.115393
  45. Yang MY, Sheng Q, Guo L, Zhang Hu, Tang GH. How Gas-Solid Interaction Matters in Graphene-Doped Silica Aerogels, Langmuir, 2022, 38: 2238-2247.    https://doi.org/10.1021/acs.langmuir.1c02777 
  46. Bi C, Tang GH, He CB, Yang X, Lu Y. Elastic modulus prediction based on thermal conductivity for silica aerogels and fiber reinforced composites, Ceramics International, 2022, 48: 6691-6697.   https://doi.org/10.1016/j.ceramint.2021.11.219
  47. Yang MY, Sheng Q, Zhang Hu, Tang GH. Water molecular bridge undermines thermal insulation of Nano-porous silica aerogels, Journal of Molecular Liquids, 2022, 349: 118176.  https://doi.org/10.1016/j.molliq.2021.118176
  48. Yang Rui, Wang Man, Du Mu, Wang XY, Tang GH. Droplet effect on the infrared transmittance of radiative cooler for direct water condensation, Solar Energy Materials and Solar Cells, 2022, 238: 111615.   https://doi.org/10.1016/j.solmat.2022.111615
  49. Hao XF, Zhang Hu, Hou Xiao, Tang GH. Radiative properties of alumina/aluminum particles and influence on radiative heat transfer in solid rocket motor, Chinese Journal of Aeronautics, 2022, 35: 98-116.    https://doi.org/10.1016/j.cja.2021.05.024
  50. Yang DL, Tang GH, Li XL, Fan YH. Capacity-dependent configurations of S-CO2 coal-fired boiler by overall analysis with a unified model, Energy, 2022, 245: 123246.  https://doi.org/10.1016/j.energy.2022.123246
  51. Fu Bo, Tang GH, McGaughey Alan JH. Finite-temperature force constants are essential for accurately predicting the thermal conductivity of rutile TiO2, Physical Review Materials, 2022, 6: 015401.   https://doi.org/10.1103/PhysRevMaterials.6.015401
  52. Fan YH, Yang DL, Tang GH, Sheng Q, Li XL. Design of S-CO2 coal-fired power system based on the multiscale analysis platform, Energy, 2022, 240: 112482.   https://doi.org/10.1016/j.energy.2021.122482
  53. Guo Lin, Shen WQ, Satish Kumar, Liu ZG, Tang GH. Lubricant-enhanced self-transport of condensed nanodroplets trapped in Wenzel state, Journal of Molecular Liquids, 2022, 348: 118206.    https://doi.org/10.1016/j.molliq.2021.118206
  54. Guo Lin, Kumar Satish, Yang MY, Tang GH, Liu ZG. Role of the microridges on cactus spines, Nanoscale, 2022, 14: 525-533.   https://doi.org/10.1039/d1nr05906h
  55. Li N, Zhao Y, Wang H, Chen Q, Li Zhe, Ma Yuan, Tang GH. Thermal and hydraulic performance of a compact precooler with mini-tube bundles for aero-engine, Applied Thermal Engineering, 2022, 200: 117656.   https://doi.org/10.1016/j.applthermaleng.2021.11765
  56. Zhang Hu, Shang CY, Tang GH. Measurement and identification of temperature-dependent thermal conductivity for thermal insulation materials under large temperature difference, International Journal of Thermal Sciences, 2022, 171: 107261.    https://doi.org/10.1016/j.ijthermalsci.2021.107261
  57. Zhang Hu, Wu KF, Tang GH. Influence of Participating Radiation on Measuring Thermal Conductivity of Translucent Thermal Insulation Materials with Hot Strip Method, Journal of Thermal Science, 2022, 31: 1023-1036.   https://doi.org/10.1007/s11630-021-1520-6
  58. Li XL, Tang GH, Yang DL, Fan YH, Xu JL. Thermal-hydraulic-structural evaluation of S-CO2 cooling wall tubes: A thermal stress evaluating criterion and optimization, International Journal of Thermal Sciences, 2021, 170: 107161.     https://doi.org/10.1016/j.ijthermalsci.2021.107161
  59. Niu D, Gao HT, Tang GH, Yan YY. Droplet Nucleation and Growth in the Presence of Noncondensable Gas: A Molecular Dynamics Study, Langmuir, 2021, 37: 9009-9016.  https://doi.org/10.1021/acs.langmuir.1c00961
  60. Zhao Xin, Tang GH, Li YF, Zhang Min, Nie YN. Biaxial Strain Improving the Thermoelectric Performance of a Two-Dimensional MoS2/WS2 Heterostructure, ACS Applied Electronic Materials, 2021, 3: 2995-3004.   https://doi.org/10.1021/acsaelm.1c00187
  61. Guo JF, Tang GH, Jiang YG, Cai HF, Feng Jian, Feng JZ. Inhibited radiation transmittance and enhanced thermal stability of silica aerogels under very-high temperature, Ceramics International, 2021, 47: 19824-19834.  https://doi.org/10.1016/j.ceramint.2021.03.321
  62. Zhang Hu, Wu KF, Xiao GM, Du YX, Tang GH. Experimental study of the anisotropic thermal conductivity of 2D carbon-fiber/epoxy woven composites, Composite Structures, 2021, 267: 113870.   https://doi.org/10.1016/j.compstruct.2021.113870
  63. Li XL, Wang SQ, Yang DL, Tang GH, Wang YC. Thermal-hydraulic and fouling performances of enhanced double H-type finned tubes for residual heat recovery, Applied Thermal Engineering, 2021, 189: 116724.    https://doi.org/10.1016/j.applthermaleng.2021.116724
  64. Zhang Min, Tang GH, Li YF. Hydrostatic Pressure Tuning of Thermal Conductivity for PbTe and PbSe Considering Pressure-Induced Phase Transitions, ACS Omega, 2021, 6: 3980-3990.    https://doi.org/10.1021/acsomega.0c05907
  65. Zhang Hu, Ma YX, Wang X, Tang GH. Numerical study of the influence of thermal radiation on measuring semi-transparent thermal insulation material with hot wire method, International Communications in Heat and Mass Transfer, 2021, 121: 105120.   https://doi.org/10.1016/j.icheatmasstransfer.2021.105120
  66. Fan YH, Tang GH, Yang DL, Li XL, Wang SQ. Integration of S-CO2 Brayton cycle and coal-fired boiler: Thermal-hydraulic analysis and design, Energy Conversion and Management, 2020, 225: 113452.    https://doi.org/10.1016/j.enconman.2020.113452
  67. Tang GH, Niu Dong, Guo Lin, Xu JL. Failure and Recovery of Droplet Nucleation and Growth on Damaged Nanostructures: A Molecular Dynamics Study, Langmuir, 2020, 36: 13716-13724.   https://doi.org/10.1021/acs.langmuir.0c02809
  68. Guo J F, Tang G H, Feng Jian, Jiang Y G, Feng J Z. Non-silica fiber and enabled stratified fiber doping for high temperature aerogel insulation, International Journal of Heat and Mass Transfer, 2020, 160: 120194.   https://doi.org/10.1016/j.ijheatmasstransfer.2020.120194
  69. Li YF, Tang GH, Fu Bo, Zhao Xin. Two-Dimensional SnSe Composited with One-Dimensional Mn Nanowires: A Promising Thermoelectric with Ultrahigh Power Factor, ACS Applied Energy Materials, 2020, 3: 9234-9245.    https://doi.org/10.1021/acsaem.0c01591
  70. Zhang San, Tang G H, Li Z, Jiang X K, Li K J, Experimental investigation on the springback of AZ31B Mg alloys in warm incremental sheet forming assisted with oil bath heating, The International Journal of Advanced Manufacturing Technology, 2020, 109: 535–551. https://doi.org/10.1007/s00170-020-05678-z
  71. Guo Lin, Tang G H, Kumar Satish, Dynamic wettability on the lubricant-impregnated surface: From nucleation to growth and coalescence, ACS Applied Materials & Interfaces, 2020, 12: 26555-26565.  https://dx.doi.org/10.1021/acsami.0c03018
  72. Zhang S, Tang G H, Wang W Q, Jiang X K, Evaluation and optimization on the formability of an AZ31B Mg alloy during warm incremental sheet forming assisted with oil bath heating, Measurement, 2020, 157107673. https://doi.org/10.1016/j.measurement.2020.107673
  73. Wang T M, Tang G H, Du M, Photothermal conversion enhancement of triangular nanosheets for solar energy harvest, Applied Thermal Engineering, 2020, 173:115182   https://doi.org/10.1016/j.applthermaleng.2020.115182 
  74. Shi Y, Tang G H, Shen L Y, Study of coalescence-induced droplet jumping during phase-change process in the presence of noncondensable gas, International Journal of Heat and Mass Transfer, 2020, 152: 119506. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119506 
  75. Zhang S, Tang G H, Wang W Q, Li Z, Wang B, Prediction and evolution of the hydraulic tortuosity for unsaturated flow in actual porous media, Microporous and Mesoporous Materials, 2020, 298110097.  https://doi.org/10.1016/j.micromeso.2020.110097  
  76. Tang GH, Hu HW, Niu Dong, Guo Lin, Sheng Qiang, Shi Yu, Advances in vapor dropwise condensation heat transfer, Chinese Science Bulletin(科学通报), 2020, 65: 1653-1676.   https://doi.org/10.1360/TB-2019-0577
  77. Yang D L, Tang G H, Fan Y H, Li X L, Wang S Q, Arrangement and three-dimensional analysis of cooling wall in 1000 MW S–CO2 coal-fired boiler, Energy, 2020, 197:117168.   https://doi.org/10.1016/j.energy.2020.117168
  78. Zhang M, Tang G H, Li Y F, Fu B, Wang X Y, Phonon thermal properties of heterobilayers with a Molecular Dynamics study, International Journal of Thermophysics, 2020, 41:57  https://doi.org/10.1007/s10765-020-02627-6
  79. Zhao X B, Tang G H, Liu Z G, Zhang Y W, Numerical investigation of erosion characteristics of multiple-particle impact on ductile material with patterned surfaces, Powder Technology, 2020, 362: 527-538.  https://doi.org/10.1016/j.powtec.2019.12.005
  80. Liu W, Tang G H, Shi Y, Apparent permeability study of rarefied gas transport properties through ultra-tight VORONOI porous media by Discrete Velocity Method, Journal of Natural Gas Science and Engineering, 2020, 74: 103100. https://doi.org/10.1016/j.jngse.2019.103100
  81. Jiang J, Li G X, Sheng Q, Tang G H, Microscopic mechanism of ice nucleation: The effects of surface rough structure and wettability, Applied Surface Science, 2020, 510: 145520. https://doi.org/10.1016/j.apsusc.2020.145520  
  82. Ma YX, Zhang Hu, Wang Xian, Tang GH, A numerical study of the measurement error introduced by TCi theoretical assumptions, Chinese Science Bulletin(科学通报), 2020, 65: 740-749.    https://doi.org/10.1360/TB-2019-0607
  83. Fu B, Parrish K D, Kim H Y, Tang G H, McGaughey A J H. Phonon confinement and transport in ultrathin films, Physical Review B, 2020, 101: 045417. https://doi.org/10.1103/PhysRevB.101.045417
  84. Guo L, Tang G H, Kumar S, Droplet morphology and mobility on lubricant-impregnated surfaces: A Molecular Dynamics study, Langmuir, 2019, 35: 16377-16387. https://doi.org/10.1021/acs.langmuir.9b02603
  85. Li X L, Tang G H, Fan Y H, Yang D L, Wang SQ, Numerical analysis of slotted airfoil fins for Printed Circuit Heat Exchanger in S-CO2 Brayton cycle, ASME Journal of Nuclear Engineering and Radiation Science, 2019, 5(4): 041303.  https://doi.org/10.1115/1.4043098
  86. Shen L Y, Tang G H, Li Q, Shi Y, Hybrid wettability-induced heat transfer enhancement for condensation with non-condensable gas, Langmuir, 2019, 35: 9430-9440.  https://doi.org/10.1021/acs.langmuir.9b01385
  87. Li Y F, Tang G H, Fu B, Hydrogenation: An effective strategy to improve the thermoelectric properties of multilayer silicone, Physical Review B, 2019, 99: 235428. https://doi.org/10.1103/PhysRevB.99.235428
  88. Shi Y, Tang G H, Lin H F, Zhao P X, Cheng L H, Dynamics of droplet and liquid layer penetration in three-dimensional porous media: A lattice Boltzmann study, Physics of Fluids, 2019, 31: 042106.  https://doi.org/10.1063/1.5091481
  89. Shi Y, Tang G H, Li S G, Qin L, Surfactant-laden droplet behavior on wetting solid wall with non-Newtonian fluid rheology,       Physics of Fluids,   2019,      31:   092104. https://doi.org/10.1063/1.5122730
  90. Guo J F, Tang G H, A theoretical model for gas-contributed thermal conductivity in nanoporous aerogels, International Journal of Heat and Mass Transfer, 2019, 137: 64-73.  https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.106
  91. Du M, Tang G H, Wang T M, Exergy analysis of a hybrid PV/T system based on plasmonic nanofluids and silica aerogel glazing, Solar Energy, 2019, 183: 501-511. https://doi.org/10.1016/j.solener.2019.03.057
  92. Wu J J, Tang G H, Wang R, Sun Y W, Multi-objective optimization for China's power carbon emission reduction by 2035, Journal of Thermal Science, 2019, 28: 184-194. https://doi.org/10.1007/s11630-019-1108-6
  93. Hou Y Q, Tang G H, Thermal-hydraulic-structural analysis and design optimization for micron-sized printed circuit heat exchanger, Journal of Thermal Science, 2019, 28: 252-261.  https://doi.org/10.1007/s11630-018-1062-8
  94. Jiang J, Lu G Y, Tang G H, Inhibition of surface ice nucleation by combination of superhydrophobic coating and alcohol spraying, International Journal of Heat and Mass Transfer, 2019, 134: 628-633.  https://doi.org/10.1016/j.ijheatmasstransfer.2019.01.080
  95. Cao S, Xu J L, Miao Z, Liu X L, Zhang M, Xie X W, Li Z, Zhao X L, Tang G H, Steady and transient operation of an organic Rankine cycle power system, Renewable Energy, 2019, 133: 284-294.  https://doi.org/10.1016/j.renene.2018.10.044
  96. Zhao X B, Tang G H, Liu Z G, Zhang Y W, Finite element analysis of anti-erosion characteristics of material with patterned surface impacted by particles, Powder Technology, 2019, 342: 193-203.  https://doi.org/10.1016/j.powtec.2018.09.083
  97. Fan Y H, Tang G H, Li X L, Yang D L, Wang S Q, Correlation evaluation on circumferentially average heat transfer for supercritical carbon dioxide in non-uniform heating vertical tubes, Energy, 2019, 170: 480-496.  https://doi.org/10.1016/j.energy.2018.12.151
  98. Shi Y, Tang G H, Cheng L H, Shuang H Q, An improved phase-field-based lattice Boltzmann model for droplet dynamics with soluble surfactant, Computers and Fluids, 2019, 179: 508-520.  https://doi.org/10.1016/j.compfluid.2018.11.018
  99. Guo L, Tang G H, Dropwise condensation on bioinspired hydrophilic slippery surface, RSC Advances, 2018, 8: 39341.  https://doi.org/10.1039/c8ra08190e
  100. Liu W, Tang G H, Su W, Wu L, Zhang Y H, Rarefaction throttling effect: Influence of the bend in micro-channel gaseous flow, Physics of Fluids, 2018, 30: 082002.  https://doi.org/10.1063/1.5037430
  101. Shi Y, Tang G H, Relative permeability of two-phase flow in three-dimensional porous media using the lattice Boltzmann method, International Journal of Heat and Fluid Flow, 2018, 73: 101-113.  https://doi.org/10.1016/j.ijheatfluidflow.2018.07.010
  102. Niu D, Tang G H, Molecular dynamics simulation of droplet nucleation and growth on a rough surface: revealing the microscopic mechanism of the flooding mode, RSC Advances, 2018, 8: 24517-24524.  https://doi.org/10.1039/c8ra04003f
  103. Wang Y C, Tang G H, Numerical investigation on the coupling of ash deposition and acid vapor condensation on the H-type fin tube bank, Applied Thermal Engineering, 2018, 139: 524-534.  https://doi.org/10.1016/j.applthermaleng.2018.05.026
  104. Fan Y H, Tang G H, Numerical investigation on heat transfer of supercritical carbon dioxide in a vertical tube under circumferentially non-uniform heating, Applied Thermal Engineering, 2018, 138: 354-364.  https://doi.org/10.1016/j.applthermaleng.2018.04.060
  105. Shi Y, Tang G H, Investigation of coalesced droplet vertical jumping and horizontal moving on textured surface using the lattice Boltzmann method, Computers & Mathematics with Applications, 2018, 75: 1213-1225.  https://doi.org/10.1016/j.camwa.2017.10.024
  106. Zhao X B, Tang G H, Si Y T, Li Y K, Experimental study of heat transfer and pressure drop for H-type finned oval tube with longitudinal vortex generators and dimples under flue gas, Heat Transfer Engineering, 2018, 39: 608-616.  https://doi.org/10.1080/01457632.2017.1325658
  107. Lu Y B, Tang G H, Sheng Q, Gu X J, Emerson D R, Zhang Y H, Knudsen's permeability correction for gas flow in tight porous media using the R26 moment method, Journal of Porous Media, 2017, 20: 787-805.   https://doi.org/10.1615/JPorMedia.v20.i9.20
  108. Fu B, Tang G H, Li Y F, Electron-phonon scattering effect on lattice thermal conductivity of silicon nanostructures, Physical Chemistry Chemical Physics, 2017, 19: 28517-28526.  https://doi.org/10.1039/c7cp04638c
  109. Niu D, Guo L, Hu H W, Tang G H, Dropwise condensation heat transfer model considering the liquid-solid interfacial thermal resistance, International Journal of Heat and Mass Transfer, 2017, 112: 333-342.  https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.061
  110. Pu J H, Li G X, Tang G H, Sun H Y, Niu D, The effect of chemical functionalisation on nanoporous energy absorption system, Molecular Simulation, 2017, 43: 1442-1447.  https://doi.org/10.1080/08927022.2017.1319057
  111. Jin Y, Tang G H, He Y L, Tao W Q, Numerical study of the solid particle erosion on H-type finned circular/elliptic tube surface, Communications in Computational Physics, 2017, 21(2): 466-489.  https://doi.org/10.4208/cicp.OA-2015-0015
  112. Sun H Y, Pu J H, Tang G H, High-performance thermogalvanic cell based on organic nanofluids (基于纳米有机液体的高性能温差电池), Acta Physico-Chimica Sinica (物理化学学报), 2016, 32(10): 2555-2562.  https://doi.org/10.3866/PKU.WHXB201606281
  113. Du M, Tang G H, Plasmonic nanofluids based on gold nanorods/nanoellipsoids/nanosheets for solar energy harvesting, Solar Energy, 2016, 137: 393-400. https://doi.org/10.1016/j.solener.2016.08.029
  114. Hu H W, Tang G H, Niu D, Wettability modified nanoporous ceramic membrane for simultaneous residual heat and condensate recovery, Scientific Reports, 2016, 6: 27274. https://doi.org/10.1038/srep27274
  115. Tang G H, Zhao Y, Guo J F, Multi-layer graded doping in silica aerogel insulation with temperature gradient, International Journal of Heat and Mass Transfer, 2016, 99: 192-200.  https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.093
  116. Shi Y, Tang G H, Wang Y, Simulation of three-component fluid flows using the multiphase lattice Boltzmann flux solver, Journal of Computational Physics, 2016, 314: 228-243. https://doi.org/10.1016/j.jcp.2016.03.011
  117. Hu H W, Tang G H, Niu D, Experimental investigation of convective condensation heat transfer on tube bundles with different surface wettability at large amount of noncondensable gas, Applied Thermal Engineering, 2016, 100: 699-707.  https://doi.org/10.1016/j.applthermaleng.2016.02.086
  118. Wang Y C, Tang G H, Prediction of sulfuric acid dew point temperature on heat transfer fin surface, Applied Thermal Engineering, 2016, 98: 492-501. https://doi.org/10.1016/j.applthermaleng.2015.12.078
  119. Lu Y B, Tang G H, Tao W Q. Experimental study of microchannel flow for non-Newtonian fluid in the presence of salt, Experimental Thermal and Fluid Science, 2016, 74: 91-99.   https://doi.org/10.1016/j.expthermflusci.2015.11.021
  120. Shi Y, Tang G H, Non-Newtonian rheology property for two-phase flow on fingering phenomenon in porous media using the lattice Boltzmann method, Journal of Non-Newtonian Fluid Mechanics, 2016, 229: 86-95.  https://doi.org/10.1016/j.jnnfm.2015.12.002
  121. Niu D, Tang G H, The effect of surface wettability on water vapor condensation in nanoscale, Scientific Reports, 2016, 6: 19192.  https://doi.org/10.1038/srep19192
  122. Jin Y, Yu Z Q, Tang G H, He Y L, Tao W Q, Parametric study and multiple correlations of an H-type finned tube bank in a fully developed region, Numerical Heat Transfer Part A-Applications, 2016, 70(1): 64-78.  https://doi.org/10.1080/10407782.2016.1173433
  123. Zhao Y, Tang G H, Monte Carlo study on extinction coefficient of silicon carbide porous media used for solar receiver, International Journal of Heat and Mass Transfer, 2016, 92: 1061-1065.  http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.08.105
  124. Gu W, Tang G H, Tao W Q, High efficiency thermophotovoltaic emitter by metamaterial-based nano-pyramid array, Optics Express, 2015, 23: 30681  https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.058
  125. Du M, Tang G H, Optical property of nanofluids with particle agglomeration, Solar Energy, 2015, 122: 864-872.  https://doi.org/10.1016/j.solener.2015.10.009
  126. Tang G H, Bi C, Zhao Y, Tao W Q, Thermal transport in nano-porous insulation of aerogel: Factors, models and outlook, Energy, 2015, 90: 701-721.  https://doi.org/10.1016/j.energy.2015.07.109
  127. Lu Y B, Tang G H, Experimental investigation of fluid through porous media packed with single-diameter and multi-diameter spheres, Transport in Porous Media, 2015, 110: 449-459.  https://doi.org/10.1007/s11242-015-0566-x
  128. Lu Y B, Tang G H, Radial voidage variation in packed beds of uniformly sized spheres: theory and experiment, Journal of Porous Media, 2015, 18(7): 689-698.  https://doi.org/10.1615/JPorMedia.v18.i7.40
  129. Shi Y, Tang G H, Xia H H, Investigation of coalescence-induced droplet jumping on superhydrophobic surfaces and liquid condensate adhesion on slit and plain fins, International Journal of Heat and Mass Transfer, 2015, 88: 445-455.  https://doi.org/10.1016/j.ijheatmasstransfer.2015.04.085
  130. Tang G H, Xia H H, Shi Y, Study of wetting and spontaneous motion of droplets on microstructured surfaces with the lattice Boltzmann method, Journal of Applied Physics, 2015, 117: 244902.  https://doi.org/10.1063/1.4923033
  131. Hu H W, Tang G H, Niu D, Experimental investigation of condensation heat transfer on hybrid wettability finned tube with large amount of noncondensable gas, International Journal of Heat and Mass Transfer, 2015, 85: 513-523.  https://doi.org/10.1016/j.ijheatmasstransfer.2015.02.006
  132. Guo L, Tang G H, Experimental study on directional motion of a single droplet on cactus spines, International Journal of Heat and Mass Transfer, 2015, 84: 198-202.  https://doi.org/10.1016/j.ijheatmasstransfer.2014.12.072
  133. Shi Y, Tang G H, Lattice Boltzmann simulation of droplet formation in non-Newtonian fluids, Communications in Computational Physics, 2015, 17(4): 1056-1072.  https://doi.org/10.4208/cicp.2014.m333
  134. Zhao Y, Tang G H, Du M, Numerical study of radiative properties of nanoporous silica aerogel, International Journal of Thermal Sciences, 2015, 89: 110-120.  https://doi.org/10.1016/j.ijthermalsci.2014.10.013
  135. Zhao Y, Tang G H, Monte Carlo study on carbon-gradient-doped silica aerogel insulation, Journal of Nanoscience and Nanotechnology, 2015, 15: 3259-3264.  https://doi.org/10.1166/jnn.2015.9669
  136. Gu W, Tang G H, Tao W Q, Thermal switch and thermal rectification enabled by near-field radiative heat transfer between three slabs, International Journal of Heat and Mass Transfer, 2015, 82: 429-434  https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.058
  137. Niu D, Tang G H, Static and dynamic behavior of water droplet on solid surfaces with pillar-type nanostructures from molecular dynamics simulation, International Journal of Heat and Mass Transfer, 2014, 79: 647-654.  https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.047
  138. Wang Y C, Tang G H, Acid condensation and heat transfer characteristics on H-type fin surface with bleeding dimples and longitudinal vortex generators, Chinese Science Bulletin, 2014, 59(33): 4405-4417.  https://doi.org/10.1007/s11434-014-0564-3
  139. Shi Y, Tang G H, Simulation of Newtonian and non-Newtonian rheology behavior of viscous fingering in channels by the lattice Boltzmann method, Computers & Mathematics with Applications, 2014, 68: 1279-1291.  https://doi.org/10.1016/j.camwa.2014.08.024
  140. Sheng Q, Tang G H, Gu X J, Emerson D R, Zhang Y H, Simulation of thermal transpiration flow using a high-order moment method, International Journal of Modern Physics C, 2014, 25: 1450061.  https://doi.org/10.1142/S0129183114500612
  141. Tang G H, Lu Y B, A resistance model for Newtonian and power-law non-Newtonian fluid transport in porous media, Transport in Porous Media, 2014, 104: 435-449.  https://doi.org/10.1007/s11242-014-0342-3
  142. Bi C, Tang G H, Hu Z J, Heat conduction modeling in 3-D ordered structures for prediction of aerogel thermal conductivity, International Journal of Heat and Mass Transfer, 2014, 73: 103-109.   https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.058
  143. Shi Y, Tang G H, Tao W Q, Lattice Boltzmann study of non-Newtonian blood flow in mother and daughter aneurysm and a novel stent treatment, Advances in Applied Mathematics and Mechanics, 2014, 6: 165-178.    https://doi.org/10.4208/aamm.2013.m137
  144. Fu B, Tang G H, Bi C, Thermal conductivity in nanostructured materials and analysis of local angle between heat fluxes, Journal of Applied Physics, 2014, 116: 124310.  https://doi.org/10.1063/1.4896551
  145. Xia H H, Tang G H, Shi Y, Tao W Q, Simulation of heat transfer enhancement by longitudinal vortex generators in dimple heat exchangers, Energy, 2014, 74: 27-36.  https://doi.org/10.1016/j.energy.2014.02.075
  146. Bi C, Tang G H, Hu Z J, Yang H L, Li J N, Coupling model for heat transfer between solid and gas phases in aerogel and experimental investigation, International Journal of Heat and Mass Transfer, 2014, 79: 126-136.  https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.098
  147. Zhao X B, Tang G H, Ma X W, Jin Y, Tao W Q, Numerical investigation of H-type finned oval tube with longitudinal vortex generators and dimples heat exchanger, Applied Energy, 2014, 127: 93-104.   https://doi.org/10.1016/j.apenergy.2014.04.033
  148. Shi Y, Tang G H, Xia H H, Lattice Boltzmann simulation of droplet formation in T-junction and flow focusing devices, Computers & Fluids, 2014, 90: 155-163.  https://doi.org/10.1016/j.compfluid.2013.11.025
  149. Hu H W, Tang G H, Theoretical investigation of stable dropwise condensation heat transfer on a horizontal tube, Applied Thermal Engineering, 2014, 62 (2): 671-679.  https://doi.org/10.1016/j.applthermaleng.2013.10.022
  150. Tang G H, Bi C, Fu B, Thermal conduction in nano-porous silicon thin film, Journal of Applied Physics, 2013, 114 (18): 184302.   https://doi.org/10.1063/1.4829913
  151. Bi C, Tang G H, Tao W Q, Heat transfer enhancement in mini-channel heat sinks with dimples and cylindrical grooves, Applied Thermal Engineering, 2013, 55: 121-132.  https://doi.org/10.1016/j.applthermaleng.2013.03.007
  152. Bi C, Tang G H, Effective thermal conductivity of the solid backbone of aerogel, International Journal of Heat and Mass Transfer, 2013, 64: 452-456  https://doi.org/10.1016/j.ijheatmasstransfer.2013.04.053
  153. Tang G H, Zhai G X, Tao W Q, Gu X J, Emerson D R, Extended thermodynamic approach for non-equilibrium gas flow, Communication in Computation Physics, 2013, 13: 1330-1356.   https://doi.org/10.4208/cicp.301011.180512a
  154. Jin Y, Tang G H, He Y L, Tao W Q, Parametric study and field synergy principle analysis of H-type finned tube bank with 10 rows, International Journal of Heat and Mass Transfer, 2013, 60: 241-251.  https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.043
  155. Bi C, Tang G H, Tao W Q, Prediction of the gaseous thermal conductivity in aerogels with non-uniform pore-size distribution, Journal of Non-Crystalline Solids, 2012, 358: 3124-3128.   https://doi.org/10.1016/j.jnoncrysol.2012.08.011
  156. Zhao Y, Tang G H, Li Z Y, Parametric investigation for suppressing near-field thermal radiation between two spherical nanoparticles, International Communications in Heat and Mass Transfer, 2012, 39: 918-922.  https://doi.org/10.1016/j.icheatmasstransfer.2012.05.008
  157. Tang G H, Lu Y B, Zhang S X, Wang F F, Tao W Q, Experimental investigation of non-Newtonian liquid flow in microchannels, Journal of Non-Newtonian Fluid Mechanics, 2012, 173: 21-29.  https://doi.org/10.1016/j.jnnfm.2012.02.001
  158. Shi Y T, Gao M, Tang G H, Tao W Q, Experimental research of CFB ash deposition on helical finned tubes, Applied Thermal Engineering, 2012, 37: 420-429.   https://doi.org/10.1016/j.applthermaleng.2011.11.064
  159. Tang G H, Hu H W, Zhuang Z N, Tao W Q, Film condensation heat transfer on a horizontal tube in presence of a noncondensable gas, Applied Thermal Engineering, 2012, 36: 414-425.   https://doi.org/10.1016/j.applthermaleng.2011.10.058 
  160. Tang G H, Zhao Y, Zhai GX, Bi C, Phonon boundary scattering effect on thermal conductivity of thin films, Journal of Applied Physics, 2011, 110(4): 046102.  https://doi.org/10.1063/1.3622317
  161. Tang G H, Non-Newtonian flow in microporous structures under the electroviscous effect, Journal of Non-Newtonian Fluid Mechanics, 2011, 166(14/15): 875-881.  https://doi.org/10.1016/j.jnnfm.2011.05.005
  162. Tang G H, Wang S B, Ye P X, Tao W Q, Bingham fluid simulation with the incompressible lattice Boltzmann model, Journal of Non-Newtonian Fluid Mechanics, 2011, 166(1/2): 145-151.   https://doi.org/10.1016/j.jnnfm.2010.11.005
  163. Li Q, He Y L, Tang G H, Tao W Q, Lattice Boltzmann modeling of microchannel flows in the transition flow regime, Microfluidics and Nanofluidics, 2011, 10(3): 607-618.  https://doi.org/10.1007/s10404-010-0693-1
  164. Li X F, Tang G H, Gao T Y, Tao W Q, Simulation of Newtonian and non-Newtonian axisymmetric flow with an axisymmetric lattice Boltzmann model, International Journal of Modern Physics C, 2010, 21(10): 1237-1254.    https://doi.org/10.1007/10.1142/S0129183110015804 
  165. Tang G H, Li X F, Tao W Q, Micro-annular electroosmotic flow with the axisymmetric lattice Boltzmann method, Journal of Applied Physics, 2010, 108(11): 114903.  https://doi.org/10.1063/1.3517437
  166. Tang G H, Ye P X, Tao W Q, Pressure-driven and electroosmotic non-Newtonian flow through microporous media via lattice Boltzmann method, Journal of Non-Newtonian Fluid Mechanics, 2010, 165(21/22): 1536-1542.  https://doi.org/10.1016/j.jnnfm.2010.11.005
  167. Zhao C Y, Dai L N, Tang G H, Qu Z G, Li Z Y, Numerical study of natural convection in porous media (metals) using Lattice Boltzmann Method (LBM), International Journal of Heat and Fluid Flow, 2010, 31(5): 925-934.  https://doi.org/10.1016/j.ijheatfluidflow.2010.06.001
  168. Tang G H, He Y L, Tao W Q, Numerical analysis of mixing enhancement for micro-electroosmotic flow, Journal of Applied Physics, 2010, 107(10): 104906.   https://doi.org/10.1063/1.3391617   
  169. Tang G H, Ye P X, Tao W Q, Electroviscous effect on non-Newtonian fluid flow in microchannels, Journal of Non-Newtonian Fluid Mechanics, 2010, 165(7/8): 435-440.  https://doi.org/10.1016/j.jnnfm.2010.01.026
  170. Tang G H, Wang F F, Tao W Q, Lattice Boltzmann simulation of electroosmotic micromixing by heterogeneous surface charge, International Journal of Modern Physics C, 2010, 21(2): 261-274.   https://doi.org/10.1142/S0129183110015105
  171. Wang Y, He Y L, Li Q, Tang G H, Tao W Q, Lattice Boltzmann model for simulating viscous compressible flows, International Journal of Modern Physics C, 2010, 21 (3): 383-407.   https://doi.org/10.1142/S0129183110015178
  172. Li Q, He Y L, Tang G H, Tao W Q, Improved axisymmetric lattice Boltzmann schemePhysical Review E, 2010, 81(5): 056707.   https://doi.org/10.1103/PhysRevE.81.056707
  173. Gu X J, Emerson D R, Tang G H, Analysis of the slip coefficient and defect velocity in the Knudsen layer of a rarefied gas using the linearized moment equations, Physical Review E, 2010, 81(1): 016313.   https://doi.org/10.1103/PhysRevE.81.016313
  174. Gu X J, Emerson D R, Tang G H, Kramers’ problem and the Knudsen minimum: a theoretical analysis using a linearized 26-moment approach, Continuum Mechanics and Thermodynamics, 2009, 21(5): 345-360.  https://doi.org/10.1007/s00161-009-0121-5
  175. He Y L, Li Q, Wang Y, Tang G H, Lattice Boltzmann method and its applications in engineering thermophysics, Chinese Science Bulletin, 2009, 54(22): 4117-4134.   https://doi.org/10.1007/s11434-009-0681-6
  176. Li Q, He Y L, Tang G H, Tao W Q, Lattice Boltzmann model for axisymmetric thermal flowsPhysical Review E, 2009, 80(3): 037702.   https://doi.org/10.1103/PhysRevE.80.037702
  177. Li Q, He Y L, Wang Y, Tang G H, Three-dimensional non-free-parameter lattice-Boltzmann model and its application to inviscid compressible flows, Physics Letters A, 2009, 373(25): 2101-2108.   https://doi.org/10.1016/j.physleta.2009.04.036
  178. Xu H, Luan H B, Tang G H, Tao W Q, Entropic lattice Boltzmann method for high Reynolds number fluid flows, Progress in Computational Fluid Dynamics, 2009, 9 (3/4/5): 183-193.  https://doi.org/10.1504/PCFD.2009.024818
  179. Tang G H, Li X F, He Y L, Tao W Q, Electroosmotic flow of non-Newtonian fluid in microchannels, Journal of Non-Newtonian Fluid Mechanics, 2009, 157(1/2): 133-137.  https://doi.org/10.1016/j.jnnfm.2008.11.002
  180. Tang G H, Zhang Y H, Barber R W, Gu X J, Emerson D R, Modeling viscous fluid damping in oscillating microstructures, Modern Physics Letters B, 2009, 23(3): 241-244.  https://doi.org/10.1142/S0217984909018102
  181. Tang G H, Zhang Y H, Gu X J, Barber R W, Emerson D R, Lattice Boltzmann modeling thermal transpiration, Physical Review E, 2009, 79(2): 027701.  https://doi.org/10.1103/PhysRevE.79.027701
  182. Tang G H, Gu X J, Barber R W, Emerson D R, Zhang Y H, Lattice Boltzmann simulation of nonequilibrium effects in oscillatory gas flows, Physical Review E, 2008, 78(2): 026706-8.  https://doi.org/10.1103/PhysRevE.78.026706
  183. Tang G H, Zhang Y H, Gu X J, Emerson D R, Lattice Boltzmann modelling Knudsen layer effect in non-equilibrium flows, Europhysics Letters, 2008, 83(4): 40008.   https://doi.org/10.1209/0295-5075/83/40008
  184. Tang G H, Zhang Y H, Emerson D R, Lattice Boltzmann models for nonequilibrium gas flows, Physical Review E, 2008, 77(4): 046701.  https://doi.org/10.1103/PhysRevE.77.046701
  185. Wang Y, He Y L, Li Q, Tang G H, Numerical simulations of gas resonant oscillations in a closed tube using lattice Boltzmann method, International Journal of Heat and Mass Transfer, 2008, 51(11/12): 3082-3090.    https://doi.org/10.1016/j.ijheatmasstransfer.2007.08.029
  186. Li Q, He Y L, Wang Y, Tang G H, An improved thermal lattice Boltzmann model for flows without viscous heat dissipation and compression work, International Journal of Modern Physics C, 2008, 19(1): 125-150.   https://doi.org/0.1142/S0129183108011978
  187. Wang Y, He Y L, Zhao T S, Tang G H, Tao W Q, Implicit-explicit finite-difference lattice Boltzmann method for compressible flows, International Journal of Modern Physics C, 2007, 18(12): 1961-1983.   https://doi.org/10.1142/S0129183107011868
  188. Tong C Q, He Y L, Tang G H, Wang Y, Liu Y W, Mass modified outlet boundary for a fully developed flow in the lattice Boltzmann equation, International Journal of Modern Physics C, 2007, 18(7): 1209-1221.   https://doi.org/10.1142/S0129183107011248
  189. Li Z, He Y L, Tang G H, Tao W Q, Experimental and numerical studies of liquid flow and heat transfer in microtubes, International Journal of Heat and Mass Transfer, 2007, 50(17): 3447-3460.   https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.016
  190. Tang G H, Li Z, He Y L, Tao W Q, Experimental study of compressibility, roughness and rarefaction influences on microchannel flow, International Journal of Heat and Mass Transfer, 2007, 50(11-12): 2282-2295.   https://doi.org/10.1016/j.ijheatmasstransfer.2006.10.034
  191. Tang G H, Li Z, He Y L, Zhao C Y, Tao W Q, Experimental observations and lattice Boltzmann method study of the electroviscous effect for liquid flow in microchannels, Journal of Micromechanics and Microengineering, 2007, 17 (3): 539-550.   https://doi.org/10.1088/0960-1317/17/3/017
  192. Tang G H, Tao W Q, He Y L, Simulating two- and three-dimensional microflows by the lattice Boltzmann method with kinetic boundary conditions, International Journal of Modern Physics C, 2007, 18(5): 805-817.   https://doi.org/10.1142/S0129183107010577
  193. Tang G H, He Y L, Tao W Q, Comparison of gas slip models with the solutions of the linearized Boltzmann equation and direct simulation of Monte Carlo method, International Journal of Modern Physics C, 2007, 18(2): 203-216.    https://doi.org/10.1142/S0129183107010383
  194. Tang G H, Li Z, Wang J K, He Y L, Tao W Q, Electroosmotic flow and mixing in microchannels with the lattice Boltzmann method, Journal of Applied Physics, 2006, 100(9): 094908-10.   https://doi.org/10.1063/1.2369636
  195. Wang Y, He Y L, Tang G H, Tao W Q, Simulation of two dimensional oscillating flow using the lattice Boltzmann method, International Journal of Modern Physics C, 2006, 17(5): 615-630.   https://doi.org/10.1142/S0129183106009023
  196. Tang G H, Tao W Q, He Y L, Gas slippage effect on microscale porous flow using the lattice Boltzmann method, Physical Review E, 2005, 72(5): 056301.   https://doi.org/10.1103/PhysRevE.72.056301
  197. Tang G H, Tao W Q, He Y L, Thermal boundary condition for the thermal lattice Boltzmann equation, Physical Review E, 2005, 72(1): 016703.   https://doi.org/10.1103/PhysRevE.72.016703
  198. Tang G H, Tao W Q, He Y L, Three-dimensional lattice Boltzmann model for gaseous flow in rectangular microducts and microscale porous media, Journal of Applied Physics, 2005, 97(10): 104918.    https://doi.org/10.1063/1.1901839
  199. Tang G H, Tao W Q, He Y L, Lattice Boltzmann method for gaseous microflows using kinetic theory boundary conditions, Physics of Fluids, 2005, 17 (5): 058101.  https://doi.org/10.1063/1.1897010
  200. Wu H R, He Y L, Tang G H, Tao W Q, Lattice Boltzmann simulation of flow in porous media on nonuniform mesh, Progress in Computational Fluid Dynamics, 2005, 5(1/2): 97-103.    https://doi.org/10.1504/PCFD.2005.005821
  201. Tang G H, Tao W Q, He Y L, Lattice Boltzmann method for simulating gas flow in microchannels, International Journal of Modern Physics C, 2004, 15 (2): 335-347.   https://doi.org/10.1142/S0129183104005747
  202. Tang G H, Tao W Q, He Y L, Simulation of fluid flow and heat transfer in a plane channel using the lattice Boltzmann method, International Journal of Modern Physics B, 2003, 17 (1/2): 183-187.  https://doi.org/10.1142/S0217979203017485