主要研究方向
§ 钙钛矿铁电光伏材料设计
开发新型钙钛矿铁电光伏材料,利用铁电极化分离光激发产生的载流子,实现对于太阳能的高效吸收和转化。
代表性研究成果:
- “Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials”, Nature 503, 509 (2013)
首次提出钙钛矿铁电半导体的理念,与实验合作实现了铁电光伏效应;
- "Ruddlesden-Popper Perovskite Sulphides A3B2S7: A New Family of Ferroelectric Photovoltaic Materials for the Visible Spectrum", Nano Energy 22, 507 (2016)
发展出“半导体材料铁电化” 的设计理念,开发出首例钙钛矿铁电硫化物;
- "Anion Ordered and Ferroelectric Ruddlesden-Popper Oxynitride Ca3Nb2N2O5 for Visible-Light-Active Photocatalysis", Chem. Mater. 32, 2815−2823 (2020)
首次设计出兼具阴离子有序排布和稳定铁电极化的钙钛矿铁电氮氧化物材料;
- "Emergence of Bulk Photovoltaic Effect in Anion-ordered Perovskite Sulfur Diiodide MASbSI2 with Spontaneous Out-of-plane Ferroelectricity", Mater. Today Phys. 21, 100459 (2021)
利用多种阴离子排列调控,实现有机-无机卤族钙钛矿铁电化的“终极目标”;
§ 低维铁电材料的高通量筛选
采用基于密度泛函理论计算的数据驱动的研究方法,对于低维材料数据库开展高通量筛选,发掘和模拟具有稳定铁电极化的低维铁电材料,探索在超薄尺寸下获得铁电性的可能性,拓展低维铁电材料作为小型化电子器件的应用前景。
代表性研究成果:
- "Niobium oxide dihalides NbOX2: a new family of two-dimensional van der Waals layered materials with intrinsic ferroelectricity and antiferroelectricity", Nanoscale Horiz. 4, 1113-1123 (2019). 通过高通量筛选,发掘出实验可合成的新型二维铁电材料NbOCl2, NbOBr2和NbOI2
后续实验验证:
- "Linear dichroism and polarization controllable persistent spin helix in two-dimensional ferroelectric ZrOI2 monolayer", Nano Research 15, 6779–6789 (2022). 证实二维铁电半导体材料ZrOI2中电控自旋的自旋电子学效应
- "Strong Sliding Ferroelectricity and Interlayer Sliding Controllable Spintronic Effect in Two-Dimensional HgI2 Layers", Nano Lett. 24, 3089−3096 (2024). 通过高通量筛选,发掘出实验可合成的新型范德华层状二维滑移铁电材料HgBr2和HgI2
其他低维铁性功能材料:
- "InBi: A ferroelastic monolayer with strain tunable spin-orbit Dirac points and carrier self-doping effect", ACS Nano 16, 21546–21554 (2022). 首次发掘出具有自反铁弹形变和铁弹可控的SOC狄拉克半金属二维材料,将针对二维材料的“弹性应变”调控工程升级成为“铁弹应变”调控。