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systematic code to q-ary systematic code. One simply needs to change
B = (CT Ik) into B = (�CT Ik) and generalize Definition 4.1 to the
following Definition 4.2, and then Theorems 4.1, 4.2, and 4.3 are also
hold.

Definition 4.2: If the stabilizer and normalizer matrices of Q =

[[n; k; d]]q are = (I(n�k)C j (I(n�k)C)S) and

N( ) =
In S

0k�n B

respectively, where S is symmetric and B = (�CT Ik), then Q is
called a systematic quantum code, and its stabilizer matrix and nor-
malizer matrix N( ) are called in standard form.

Remark 4.2: In [10], Tonchev proved that the subspaces generated
by matrices of the form (In jS) are maximum totally isotropic sub-
spaces, where S is the adjacency matrix of an undirected graph. He
also pointed out that the number of trace self-dual additive codes with
generator matrix �(In jS) is much smaller than the total number of
trace self-dual additive codes. Our Theorem 4.3 shows that it suffices
to study trace self-dual additive codes with generator matrix �(In jS)
for dealing with trace self-dual additive codes.
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On The Classification of Binary Optimal
Self-Orthogonal Codes

Ruihu Li, Zongben Xu, and Xuejun Zhao

Abstract—The classification of binary [n; k; d] codes with d � s2 and
without zero coordinates is reduced to the classification of binary [(2 �
1)c(k; s; t) + t; k; d] code for n = (2 � 1)s + t, s � 1 and 1 � t �
2 � 2, where c(k; s; t) � minfs; tg is a function of k; s; and t. Binary
[15s + t; 4] optimal self-orthogonal codes are characterized by systems of
linear equations. Based on these two results, the complete classification of
[15s + t; 4] optimal self-orthogonal codes for t 2 f1;2; 6; 7; 8; 9; 13; 14g
and s � 1 is obtained, and the generator matrices and weight polynomials
of these 4-dimensional optimal self-orthogonal codes are also given.

Index Terms—Binary linear code, self-orthogonal code, optimal code.

I. INTRODUCTION

Since the pioneer work of Pless in [6], people paid much attention
on self-dual codes—a subclass of self-orthogonal codes (SO codes, for
short), and a vast number of papers have been devoted to the study of
self-dual codes, as shown in the excellent survey of [7] and [4] for an
overview of these results and the references therein.

But, very little has previously been known about the minimum dis-
tance and number of general [n; k] SO codes of rate less than 1

2
, except

the binary [2k + 1; k] SO codes for k � 9 in [6].
Recently, people begin to study general optimal [n; k] SO codes of

rate less than 1
2

and use these optimal [n; k] SO codes to study self-dual
codes, see [1]. In [2] Bouykliev et al. studied the classification of op-
timal SO codes of length � 29 and dimension less than 7 over F3

and F4. In [3] Bouykliev et al. studied the classification of binary op-
timal SO codes of length � 40 and dimension less than 10, and gave
complete classification of three-dimensional (3-D) optimal SO codes.
However, their classification are based on two algorithms and no uni-
fied proofs for dimension greater than 4, and most of the generator ma-
trices of their optimal SO codes of length � 25 and dimension greater
than 6 are not given.

In this correspondence, we discuss the classification of k-dimen-
sional binary optimal SO codes. This correspondence is arranged as
follows. First, we give some notations and make some preparation in
this section. In Section II, we give the proof of our main result. In
Section III, we give the relations of binary SO codes and some systems
of linear equations, and explain how to determine the [15s + t; 4] op-
timal SO codes. In Section IV, we give the classification of [15s+ t; 4]
optimal SO codes for t 2 f1; 2; 6; 7; 8; 9; 13; 14g and s � 1.
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Let Fn
2 be the n-dimensional row vector space over the binary field

F2. A binary linear [n; k] code C is a k-dimensional subspace of Fn
2 .

The weight w(x) of x 2C is the number of its nonzero coordinates. A
code C is called even if the weights of x 2C are even and odd otherwise.
Two binary codes C and C0 are equivalent if one can be obtained from
the other by permuting the coordinates. If two matrices G1 and G2

generate equivalent codes, we denote them as G1
�= G2.

The dual code C? of C is defined as C?= fx 2 Fn
2 j x � y = xyT =

0for all y 2 Cg. A code C is self-orthogonal if C � C?, and self-dual
if C = C?. All SO codes are even, but an even code is not always
self-orthogonal.

Definition 1.1: An [n; k] SO code C is called optimal if it has the
highest weight among all [n; k] SO codes.

Let N(n; k) be the number of nonequivalent optimal [n; k] SO
codes, and N0(n; k) and N1(n; k) be the number of nonequivalent
optimal [n; k] SO codes with zero coordinates and without zero
coordinates, respectively. Then N(n; k) =N0(n; k) +N1(n; k).
If the minimum distance of an optimal [n; k] SO code equal the
minimum distance of an optimal [n � 1; k] SO code, then N0(n; k)
= N(n � 1; k), otherwise N0(n; k) = 0. Thus, in the following we
usually focus on optimal SO codes without zero coordinates.

We use Gk to denote the generator matrix of [2k � 1; k] simplex
code, and 1n=(1; 1; � � � ; 1)1�n and 0n=(0;0; . . . ; 0)1�n to denote the
all-ones vector and the zero vector of length n, respectively. And use
iG = (G;G; � � � ; G) to denote the juxtaposition of i copies of G for
given matrix G.

Our main result of this correspondence is as follows.

Theorem 1.1: Suppose k � 3; s � 1; 1 � t � 2k � 2 and
n = (2k�1)s+t. Then, every [n; k; d] binary code C with d � s2k�1

and without zero coordinates is equivalent to a code with generator
matrix G = ((s� c(k; s; t))Gk H), where c(k; s; t) � minfs; tg is
a function of k; s and t, and H has (2k � 1)c(k; s; t) + t columns.

According to Theorem 1.1, the classification of [n; k] optimal SO
codes can be reduced to the classification of [(2k � 1)c(k; s; t) + t; k]
optimal SO codes.

II. PROOF OF THEOREM 1.1

In order to prove Theorem 1.1, we need some preparation.
Let �i be the k-dimensional binary column vector representa-

tion of i for 0 � i � 2k � 1, i.e., �0 = (0; 0; . . . ; 0)T = 0
T

k ;

�1=(0; 0; . . . ; 1)T , � � � ; �2 �1 = (1; 1; . . . ; 1)T . Then Gk =
(�1; . . . ; �2 �1) is a generator matrix of [2k � 1; k] simplex code.
Using the columns of Gk , we construct a (2k � 1)� (2k � 1) matrix
Dk , where Dk= ( 1

2
(1� (�1)� �� ))1�i;j�2 �1.

Let 1 � i; j;m � 2k�1. For each �i, there are 2k�1�1�m’s such
that �i ��m = 0 and 2k�1�m’s such that �i ��m = 1, and if �i 6= �j ,
there are 2k�2 � 1�m’s such that �i � �m =�j � �m = 0. Thus each
row of Dk has weight 2k�1, and the distance of any two different rows
of Dk is 2k�1. Hence, the rows of Dk are just the nonzero vectors of
the [2k � 1; k] simplex code generated by Gk .

Suppose G is a generator matrix of an [n; k] code C. If the
columns of G have li copies of �i for 0 � i � 2k � 1, we de-
note G as G = (l0�0; l1�1; . . . ; l2 �1�2 �1) for short, and call
LGc = (l0; l1; . . . ; l2 �1) the complete define vector of G and
LG = (l1; l2; . . . ; l2 �1) the define vector of G. If the code generated
by G without zero coordinates, then LGc = LG. Let Y T = DkL

T
G,

where Y = (y1; y2; . . . ; y2 �1). Then the nonzero weights of C are
y1; y2; . . . ; y2 �1.

Lemma 2.1: If k � 3, then Dk is invertible over the rational field
, and D�1

k = � 1
2

((�1)� �� ))1�i;j�2 �1. And each row (or
column) of 2k�1D�1

k has 2k�1 1’s and (2k�1 � 1)� 1’s.
Proof: Let Ek =� 1

2
((�1)� �� ))1�i;j�2 �1; ai be the ith

row of Dk and bm be the mth column of Ek . From the above discus-
sion, it is easy to check that

aibm = �
1

2k
j

[1� (�1)� �� ](�1)� ��

= �
1

2k
[
j

(�1)� �� �
j

(�1)� �(� +� )]

= �
1

2k
[�1� (�1 + 2k�i;m)]

= �i;m:

Hence, the Lemma holds.

Proof of Theorem 1.1: Let G = (l1�1; � � � ; l2 �1�2 �1) be a gen-
erator matrix of C. The nonzero weights y1; y2; . . . ; y2 �1 of C are
given by

y1

y2
...

y2 �1

= Dk

l1

l2
...

l2 �1

:

Let zi = yi � s2k�1. Then

z1

z2
...

z2 �1

= Dk

l1

l2
...

l2 �1

�Dk

s

s
...
s

= Dk

l1 � s

l2 � s
...

l2 �1 � s

:

i.e.

l1 � s

l2 � s
...

l2 �1 � s

= D
�1
k

z1

z2
...

z2 �1

:

Since zi � 0, we have

li � s � �
1

2k�1
(z1 + z2 + . . . + z2 �1)

= �
1

2k�1
[(y1 + y2 + . . . + y2 �1)� s2k�1(2k � 1)]

= �
1

2k�1
[2k�1((2k � 1)s+ t)� s2k�1(2k � 1)]

= �t:

Let c(k; s; t) = �minfli � s j 1 � i � 2k � 1g. Then c(k; s; t) �
minfs; tg, and the conclusion follows.

Using Theorem 1.1, one can deduce the following corollary.

Corollary 2.2: If k � 3, every [(2k � 1)s; k; s2k�1] code is equiv-
alent to the SO code with generator matrix sGk .

III. BINARY SELF-ORTHOGONAL CODES AND SYSTEMS

OF LINEAR EQUATIONS

We will use systems of liner equations to characterize SO codes of
given minimum distance, and explain how to determine the generator
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matrices of all [n; 4] optimal SO codes, where n = 15s+ t; s � 1 and
1 � t � 14. And, we will give a method of determining c(4; s; t) at
the end of this section.

Let C = [n; k + 1; 2m] be a SO code. From the definition of equiv-
alence of binary codes, we can assume that C has generator matrix G,
where

G =
12m 0n�2m

X Y
:

Lemma 3.1: Let C = [n; k + 1; 2m] be a SO code with generator
matrix G as above, and let the codes generated by (X Y ); X and Y
be C0; C1 and C2, respectively. Then C0 is an [n; k] SO code, C1 and
C2 are even codes. And the following holds.

1) If (u j v) 2 C0 with u 2 C1 and v 2 C2, then w(u) � w(v).
2) d(C1) � d(C2) and d(C2) � 2dm

2
e.

3) C2 is an [n � 2m;k] code.
Proof: Since C is self-orthogonal, it is obviously that C0 is an

[n; k] SO code, C1 and C2 are even codes.
1) Let (u j v) 2 C0 with u 2 C1 and v 2 C2, and w(u) = 2a and

w(v) = 2b. Then w(u+ 12m j v) = 2m� 2a+ 2b � d(C) =
2m, thus w(u)� w(v).

2) If v1 2 C2 with w(v1) = d(C2), then there is a u1 2 C1 such that
(u1 j v1) 2 C0, and d(C1) � w(u1)� w(v1) = d(C2). Since
2d(C1) � w(u1) + w(v1) � d(C) and d(C2) is even, thus we
have d(C2) � 2dm

2
e.

It is obviously that 3) also holds from the discussion of 1) and 2).

Using Lemma 3.1 and the Griesmer bound, one can deduce the fol-
lowing corollary easily.

Corollary 3.2: There are no [15s+5; 4; 8s+2] and [15s+12; 4; 8s+6]
SO codes.

Now, we focus our discussion on [n; 4] optimal SO codes without
zero coordinates, where n = 15s + t and s; t � 1, and let C =
[n; 4; 2m] be such a code.

Let G be a generator matrix of C, where G;X; Y as in
Lemma 3.1. And, let X = (l0�0; l1�1; . . . ; l7�7) and Y =
(r1�1; r2�2; . . . ; r7�7). Then, L0 = (l0; l1; � � � ; l7) is the complete
define vectors of X; L = (l1; l2; � � � ; l7) and R = (r1; r2; � � � ; r7) are
the define vectors of X and Y , respectively. Since G can be completed
determined by (L0; R), we call (L0; R) the define vectors of G. Let
W T

X=D3L
T and W T

Y = D3R
T , where WX = (x1; x2; . . . ; x7) and

WY = (y1; y2; . . . ; y7). Then, we change the problem of determine
G into that of determine X and Y (or (L0; R)).

Since GL(3; 2) acts double transitively on f�1; � � � ; �7g, so, in the
following, we can assume r1 � r2� ri; i = 3; 4; � � � ; 7, and r4� rj ,
j = 5; 6; 7 as in [3].

Since y1 + y2 + � � � + y7 = 4(n � 2m), we have the following
system of linear equations:

RT = D�1
3 W T

Y

yi � 0(mod2); i = 1; 2; � � � ; 7

2dm
2
e � yi � n� 2m

y1 + y2 + � � �+ y7 = 4(n� 2m)

r1 � r2 � ri; i = 3; 4; � � � ; 7

r4 � rj ; j = 5; 6; 7:

(1)

For each givenWY = (y1; y2; � � � ; y7) satisfying y1+y2+ � � �+y7 =
4(n� d(C)), yi � 0(mod 2) and yi � d(C2) for 1 � i � 7, such Y
exists if and only if (1) has nonnegative integer solutions. Thus, one can
easily determine all the possible Y (or R) by the nonnegative integer
solutions of (1).

Once R (or Y ) satisfying (1) is given, from [3] and Lemma 3.1, we
know that ri + li � rj + lj(mod 2), and xi � yi for 1 � i � 7.
Thus, WX and L0 can be determined by the following system of linear
equations (2):

LT = D�1WT
X

xi � 0(mod 2)

xi + yi � 2m; 1 � i � 7

yi � xi � 0; 1 � i � 7

ri + li � rj + lj(mod 2); 1 � i; j � 7

l0 = 2m� (l1 + � � �+ l7):

(2)

Then, X exists if and only if (2) has nonnegative integer solutions.
Thus, one can easily determine all the possible X by the nonnegative
integer solutions of (2), and determine all the possible generator matrix
G of [n; 4; 2m] optimal SO codes at last.

For given s � 1 and 1 � t � 14. Denote the set of all the
generator matrix G (determined above) of [15s + t; 4] optimal SO
codes as G[15s + t; 4], and let D[15s + t; 4] = f(L0; R) j (L0; R)
is the define vectors of G;G 2 G[15s + t; 4]g. Then c(4; s; t) =
�min0�i�7;1�j�7fli � s; rj � s j (L0; R) 2 D[15s+ t; 4]g.

IV. CLASSIFICATION OF FOUR-DIMENSIONAL (4-D)
OPTIMAL SO CODES

In this section, we will study the classification of optimal [n; 4] SO
codes for n = 15s + t; s � 1 and t 2 f1; 2; 6; 7; 8; 9; 13; 14g. Ac-
cording to Corollary 2.2 and 3.2, and the relations among N(n; k);
N0(n; k); N1(n; k) and N(n� 1; k), we only need to give N1(n; 4).

To save space, we only explain our classification process for [15s+
1; 4] OSO codes, other case can be deduced similarly. And, we use
OSO codes to represent optimal SO codes without zero coordinates in
this section.

Case 1: n = 15s + 1; s � 1.

A [15s + 1; 4] OSO code has minimum distance 8s. Using
MATLAB [8] program, one can easily check that there are
seven solutions satisfying (1) and (2), thus D[15s + 1; 4] has
seven elements, denoted as (L0i; Ri) = (sss18; sss17) + (L00i; R

0
i),

1 � i � 7, where L001 = (�1; 1; 1, �1; 1;�1;�1; 1) = �L002,
L003 = 08, L004 = (1;�1;�1; 1; 0; 0; 0; 0) = �L005, L006 =
�L007 = (0; 0; 0; 0; 1;�1;�1; 1), R0i = (1; 1;�1; 1;�1;�1; 1) for
1 � i � 3, and R0i = (1; 1;�1; 0; 0; 0; 0) for 4 � i � 7. Thus
c(4; s; 1) = 1. Accordingly, the generator matrices Gn(i), 1 � i � 7,
of these 7 OSO codes are determined.

Let the define vectors of H16;j be (L0;j; R) and Gn;j = ((s �
1)G4 H16;j); j = 1; 2,where L0;1 = (0; 2; 2; 0; 2; 0; 0; 2); L0;2 =
(1; 1; . . . ; 1); R = (2; 2; 0; 2; 0; 0; 2). It is easy to check that Gn(i)

�=
Gn;1 for 1 � i � 2, and Gn(i)

�= Gn;2 for 3 � i � 7. Thus, we have
the following theorem.

Theorem 4.1: If n = 15s+ 1; s � 1, then N1(n; k) = 2. The two
nonequivalent [n; 4; 8s] OSO codes have generate matrices Gn;1 and
Gn;2, their weight polynomials are 1+14y8s+y8s+8 and 1+13y8s+
2y8s+4, respectively.

Case 2: n = 15s + 2; s � 1.

Let the define vectors of H17;i be (L0;i;R1) and H32;i = ((s �
1)G4 H17;i) for i = 1; 2, where L0;1 and L0;2 as in Case 1, and
R1 = (3; 1; . . . ; 1).

Let the define vectors of H32;j be (L0;j; Rj) for 3 � j � 9,
where L0;3 = (2; 2; . . . ; 2) = L0;7; L0;4 = (0; 3; 3; 2; 3; 2; 2; 1);
L0;5 = (0; 4; 3; 1; 3; 1; 2; 2); L0;6 = (0; 3; 3; 2; 3; 2; 3); L0;8 =
(3; 1; 1; 3; 1; 3; 3; 1); L0;9 = (0; 4; 4; 0; 4; 0; 0; 4); R3 =
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(4; 4; 0; 2; 2; 2; 2); R4 = (3; 3; 2; 3; 2; 2; 1); R5 = (4; 3; 1; 3; 1; 2; 2);
R6 = (3; 3; 2; 3; 2; 3); R7 = (4; 4; 0; 4; 0; 0; 4) = R8 = R9.

If s � 2, let Gn;l = ((s� 2)G4 H32;l) for 1 � l � 9.

Theorem 4.2: Let n = 15s+ 2; s � 1.
1) If s = 1, then N1(17; 4) = 2. The two [17; 4; 8] OSO codes have

generate matrices H17;1 and H17;2, and have weight polynomials
1 + 11y8 + 4y12 and 1 + 7y8 + 8y10, respectively.

2) If s � 2, then N1(n; 4) = 9. The nine nonequivalent [n; 4; 8s]
OSO have generate matrices Gn;i; 1 � i � 9, their weight poly-
nomials are 1+11y8s+4y8s+4, 1+7y8s+8y8s+2, 1+11y8s+
4y8s+4, 1 + 11y8s + 4y8s+4, 1 + 12y8s + 2y8s+4 + y8s+12,
1+12y8s+2y8s+4+y8s+12, 1+13y8s+2y8s+8, 1+13y8s+
y8s+4 + y8s+12, 1 + 14y8s + y8s+16, respectively.

Case 3: n = 15s + 6; s � 1.

Let the define vectors ofH21 be (L0;a; Ra) andH36;1 = (G4H21),
where L0;a = (1; 2; 2; 1; 2; 1; 1; 0), Ra = (2; 2; 1; 2; 1; 1; 2).
Let the define vectors of H36;2 be (L0;b; Rb), where L0;b =
(3; 2; 2; 3; 2; 3; 3; 0), Rb = (3; 3; 2; 3; 2; 2; 3). For s � 2, let
Gn;i = ((s� 2)G4 H36;i); 1 � i � 2.

Theorem 4.3: Let n = 15s+ 6; s � 1.
1) If s = 1, then N1(n; 4) = 1. The [21; 4; 10] OSO code has

generate matrixH21 and weight polynomial 1+8y10+6y12+y16.
2) If s � 2, then N1(n; 4) = 2. The two nonequivalent [n; 4; 8s +

2] OSO codes have generate matrices Gn;1 and Gn;2, and their
weight polynomials are 1 + 8y8s+2 + 6y8s+4 + y8s+8 and 1 +
7y8s+2 + 7y8s+4 + y8s+6, respectively.

Case 4: n = 15s + 7; s � 1.

Let the define vectors of H22;i be (L01;i; Ri) and H37;i =
(G4 H22;i); 1 � i � 6, where L01;1 = (1; 2; 2; 1; 2; 1; 1; 0),
L01;2 = (0; 3; 3; 0; 3; 0; 0; 1), L01;3 = (1; 2; 2; 1; 1; 0; 0; 3),
L01;4 = (2; 1; 1; 2; 2; 1; 1; 0), L01;5 = (2; 0; 2; 2; 2; 2; 0; 0),L01;6 =
(1; 2; 1; 2; 1; 2; 1; 0), R1 = (3; 3; 0; 3; 0; 0; 3) = R2, R3 =
(3; 3; 0; 2; 1; 1; 2) = R4, R5 = (2; 2; 2; 2; 2; 2; 0), R6 =
(3; 2; 1; 2; 1; 2; 1).

Let the define vectors of H37;j be (L02;j; Rj) for 7 � j � 8,
where L02;7 = (3; 2; 2; 3; 2; 3; 3; 0), L02;8 = (2; 3; 3; 2; 2; 3; 3; 0),
R7 = (4; 4; 1; 4; 1; 1; 4), R8 = (4; 4; 1; 3; 2; 2; 3).

Let the define vectors of H52;l be (L03;l; Rl) for 9 � l � 12,
where L03;9 = (5; 2; 2; 5; 2; 5; 5; 0), L03;10 = (4; 3; 3; 4; 2; 5; 5; 0),
L03;11 = (3; 4; 3; 4; 3; 4; 5; 0), L03;12 = (2; 4; 4; 4; 4; 4; 4; 0),
R9 = (5; 5; 2; 5; 2; 2; 5), R10 = (5; 5; 2; 4; 3; 3; 4), R11 =
(5; 4; 3; 4; 3; 4; 3), R12 = (4; 4; 4; 4; 4; 4; 2).

Let H52;m = (G4 j H37;m) for 1 � m � 8, and Gn;p = ((s �
3)G4 j H52;p) for s � 3 and 1 � p � 12.

Theorem 4.4: Let n = 15s+ 7; s � 1.
1) If s = 1, then N1(22; 4) = 6. The six nonequivalent [22; 4; 10]

OSO codes have generate matrix H22;i, 1 � i � 6, and their
weight polynomials W22;i are 1 + 7y10 + 6y12 + y16 + y18,
1 + 7y10 + 7y12 + y22, 1 + 6y10 + 7y12 + y14 + y18, 1 +
6y10 + 6y12 + 2y14 + y16, 1 + 6y10 + 6y12 + 2y14 + y20,
1 + 5y10 + 7y12 + 3y14, respectively.

2) If s = 2, then N1(37; 4) = 8. The eight nonequivalent [37; 4; 18]
OSO codes have generate matricesH37;j ; 1 � j � 8, their weight
polynomialsW37;j areW37;i= 1+y8(W22;i�1) for 1 � i � 6,
and W37;7= 1+ 7y18 + 6y20 + y22 + y28, W37;8= 1+ 7y18 +
5y20 + y22 + 2y24, respectively.

3) If s � 3, then N1(n; 4) = 12. The twelve nonequiv-
alent [n; 4; 8s + 2] OSO codes have generate matrices
Gn;l; 1 � l � 12, their weight polynomials Wn;l are

Wn;j= 1+y8(s�2)(W37;j�1) for 1 � j � 8, and 1+8y8s+2+
6y8s+4 + y8s+16; 1 + 8y8s+2 + 5y8s+4 + y8s+8 + y8s+12,
1+8y8s+2+4y8s+4+3y8s+8, 1+8y8s+2+4y8s+4+3y8s+8,
respectively.

Case 5: n = 15s+ 8; s � 1.
Theorem 4.5: Ifn = 15s+8; s � 1, thenN(n; 4) =N1(n; k) = 1.

The only [n; 4; 8s + 4] OSO code is the juxtaposition of s-copies of
simplex codes and the [8; 4; 4] self-dual code, and has weight polyno-
mial 1 + 14y8s+4 + y8s+8.

Case 6: n = 15s+ 9; s � 1.

Let the define vectors of H24;i be (L0i;c; Ri;c) and Gn;i =
(G4 H24;i), 1 � i � 4, where L01;c = (3; 0; 0; 3; 0; 3; 3; 0),
L02;c = (2; 1; 1; 2; 1; 2; 2; 1), L03;c = (2; 1; 1; 2; 2; 1; 1; 2), L04;c =
(0; 3; 3; 0; 3; 0; 0; 3), R1;c = R2;c = R4;c = (3; 3; 0; 3; 0; 0; 3),
R3;c = (3; 3; 2; 1; 1; 2).

Theorem 4.6: If n = 15s+ 9 and s � 1, then N1(n; 4) = 4. The
four nonequivalent [n; 4; 8s + 4] OSO codes have generator matrices
Gn;i; 1 � i � 4, and their weight polynomials are 1 + 14y8s+4 +
y8s+16, 1 + 13y8s+4 + y8s+8 + y8s+12, 1+ 12y8s+4 + 3y8s+8, and
1 + 12y8s+4 + 3y8s+8, respectively.

Case 7: n = 15s + 13; s � 1.

Let the define vectors of H28 be (L0;d; Rd) and Gn = ((s�1)G4 j
H28) for s � 1, where L0;d = (0; 2; . . . ; 2); Rd = (2; . . . ; 2).

Theorem 4.7: If n = 15s + 13; s � 1, then N1(n; k) = 1. The
only [n; 4; 8s + 6] SO code has generator matrix Gn, and has weight
polynomial 1 + 8y8s+6 + 7y8s+8.

Case 8: n = 15s + 14; s � 1.

Let the define vectors of H29;i be (L01;e; Ri;e) and H44;i =
(G4 H29;i) for 1 � i � 3, where L01;e = (3; 1; 1; 3; 1; 3; 1; 1),
L02;e = (2; 2; 2; 2; 3; 1; 1; 1), L03;e = (0; 2; 2; . . . ; 2), R1;e =
R3;e = (3; 3; 1; 3; 1; 1; 3), R2;e = (3; 3; 1; 2; 2; 2; 2).

Let the define vectors of H44;l be (L0l;e; Rl;e) for 4 � l � 5,
where L04;e = (0; 4; 4; 2; 4; 2; 2; 4) = (0;R4;e), L05;e =
(0; 4; 4; 2; 3; 3; 3; 3) = (0; R5;e). Let Gn;m = ((s � 2)G4 H44;m)
for s � 2 and 1 � m � 5.

Theorem 4.8: Let n = 15s+ 14; s � 1 as follows.
1) If s = 1, then N1(n; 4) = 3, the three nonequivalent [29; 4; 14]

OSO codes have generate matrix H29;1; H29;2 and H29;3, and
their weight polynomials are 1+ 7y14 +7y16 + y22, 1+ 6y14 +
7y16 + 2y18, 1 + 7y14 + 6y16 + y18 + y20, respectively.

2) If s� 2, then N1(n; 4)=5. The five nonequivalent [n; 4; 8s+6]
OSO codes have generator matrices Gn;i, 1 � i � 5, and their
weight polynomials are 1 + 7y8s+6 + 7y8s+8 + y8s+14, 1 +
6y8s+6 + 7y8s+8 + 2y8s+10, 1+ 7y8s+6 + 6y8s+8 + y8s+10 +
y8s+12, 1+8y8s+6 +6y8s+8 + y8s+16, 1+8y8s+6 +5y8s+8 +
2y8s+12, respectively.

V. CONCLUSION

We have given the complete classification of [15s+ t; 4] optimal SO
codes for s � 1 and t 2 f1; 2; 6; 7; 8; 9; 13; 14g. Our classification
results of optimal [n; 4] SO codes for n � 40 in Section IV are con-
cordant with the results of [3]. For t 2 f3; 4; 5; 10; 11; 12g and s � 1,
the classification of [15s + t; 4] optimal SO codes can also be given
as in Section IV, but a little complex and lengthy, we will discuss in
another paper. The method we used in Section III can be generalized
to [n; k] optimal SO codes for k � 4.



3782 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 8, AUGUST 2008

ACKNOWLEDGMENT

The authors are very grateful to an anonymous referee for the proofs
of Lemma 2.1 and Theorem 1.1 which simplifies the original proofs.

REFERENCES

[1] S. Bouyuklieva, “Some optimal self-orthogonal codes and self-dual
codes,” Discr. Math., vol. 287, pp. 1–10, 2004.

[2] I. Bouyukliev and P. Ostergard, “Classification of self-orthogonal
codes over F and F ,” SIAM J. Discr. Math., vol. 19, no. 2, pp.
363–370, 2005.

[3] I. Bouyukliev, S. Bouyuklieva, T. A. Gulliver, and P. Ostergard, Classi-
fication of Optimal Binary Self-Orthogonal Codes. [Online]. Available:
http://users.tkk.fi/pat/patric-pub-html

[4] W. C. Huffman, “On the classification and enumeration of self-dual
codes,” Finite Fields Appl., vol. 11, pp. 451–490, 2005.

[5] W. C. Huffman and V. Pless, Fundmentals of Error-Correcting
Codes. Cambridge, U.K.: Cambridge University Press, 2003.

[6] V. Pless, “A classification of self-orthogonal codes over GF (2),” Discr.
Math., vol. 3, pp. 209–246, 1972.

[7] E. M. Rains and N. J. A. Sloane, “Self-Dual Codes,” in Handbook of
Coding Theory, W. C. Huffman and V. S. Pless, Eds. Amsterdam,
The Netherlands: Elsevier, 1998, pp. 177–294.

[8] The MathWorks, MATLAB R2006a, Natick, MA, 2006.

The Icosian Code and the Lattice: A New
Space–Time Code With Nonvanishing Determinant

Jiaping Liu and A. Robert Calderbank, Fellow, IEEE

Abstract—This paper introduces a new rate-2, full-diversity space–time
code for four transmit antennas and one receive antenna. The 4 � 4 code-
word matrix consists of four 2 � 2 Alamouti blocks with entries from
Q(i;

p
5), and these blocks can be viewed as quaternions which in turn rep-

resent rotations in R . The Alamouti blocks that appear in a codeword are
drawn from the icosian ring consisting of all linear combinations of 120
basic rotations corresponding to symmetries of the icosahedron. This alge-
braic structure is different from the Golden code, but the complex entries
are taken from a common underlying field. The minimum determinant is
bounded below by a constant that is independent of the signal constella-
tion, and the new code admits a simple decoding scheme that makes use of
a geometric correspondence between the icosian ring and the E lattice.

Index Terms—Space–time codes, icosian ring, Gosset lattice E , reduced
complexity decoding algorithms.

I. INTRODUCTION

Space–time codes improve the reliability of communication systems
over fading channels by correlating signals across different transmit
antennas. Tarokh et al. [1] developed the following two design criteria
for the high SNR regime.

• Rank Criterion: Maximize the minimum rank r of the difference
Xi�Xj over all distinct pairs of space–time codewords Xi; Xj ;
the space–time code achieves a diversity gain of r.
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• Determinant Criterion: For a given diversity r, maximize the
minimum product � of the nonzero singular values of the differ-
ence Xi � Xj over all distinct pairs of space–time codewords
Xi;Xj ; the product � determines the coding gain of the space-
time code.

The construction of space–time block codes that achieve particular
rate–diversity tradeoffs is an area of intense research activity (see
[2]–[9]), and many authors have used algebraic techniques to guarantee
full diversity (see the monograph by Viterbo and Oggier [10] con-
necting algebraic number theory to code design for Rayleigh-fading
channels). We will follow this approach to get full diversity, and in
addition, we will use the algebraic techniques to introduce a geometric
structure that simplifies decoding.

Conway and Sloane [12] connected the geometry of finite-dimen-
sional lattices with signal constellation design for the additive white
Gaussian noise channel. The lattice/coset framework provides solu-
tions to the problem of addressing the signal constellation at the en-
coder and the problem of decoding the received vector to the closest
lattice point at the decoder. We are able to simplify decoding of the
new space–time block code by associating constituent Alamouti blocks
with vectors in the Gosset latticeE8 and then applying theE8 decoding
algorithms developed by Conway and Sloane.

The new code is described by a 4 � 4 matrix for four transmit an-
tennas and one receive antenna for the implementation of its low-com-
plexity decoding algorithm. It contains four 2 � 2 Alamouti blocks,
each of which is the quaternionic form of an icosian. The algebraic
structure of the code is similar to the Golden code [2] of Belfiore et
al. in that algebraic conjugation interchanging

p
5 and �p5 appears

as the isomorphism of the Galois extensionQ(i;
p
5)=Q(i) used in the

construction of the Golden code. The codeword matrix takes the form

X =
A B

�B �K �A

where information symbols A and B are icosians in Alamouti blocks
and �A; �B are the algebraic conjugates of A;B. Moreover, a “magic
K” which is also an Alamouti block of an icosian will be chosen to
guarantee full diversity. A similar approach to increasing diversity by
rotation is given by Jafarkhani for his quasi-orthogonal code design [5].

The correspondence is organized as follows. Section II introduces
the icosian ring and derives some important properties. Section III gives
the construction of the new 4 � 4 Space–Time Block Code (STBC)
based on the icosian ring and establishes full diversity. Section IV de-
velops a coherent decoding scheme with reduced complexity, using
the correspondence of the icosian ring with the E8 lattice. Simula-
tion results are presented in Section V and conclusions are given in
Section VI.

II. THE ICOSIAN RING AND THE LATTICE E8

We assume a basic familiarity with quaternion algebra, including
the classical two-to-one correspondence between unit quaternions and
rotations in SO3, and we refer readers interested in more details to
Conway and Sloane [12, pp. 52–55].

Definition 1: The double cover 2I of the icosahedral group is a mul-
tiplicative group of order 120 consisting of the quaternions

(�1; 0; 0; 0)E ; 1
2
(�1;�1;�1;�1)E; 1

2
(0;�1;��;�� )E

where (�; �; 
; �)means�+�i+
j+�k; � = 1�
p
5

2
; � = 1+

p
5

2
, and

the superscript E means that all even permutations of the coordinates
are permitted.
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