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Abstract—With the potential to increase road safety and provide
economic benefits, intelligent vehicles have elicited a significant
amount of interest from both academics and industry. A robust
and reliable vehicle detection and tracking system is one of the
key modules for intelligent vehicles to perceive the surrounding
environment. The millimeter-wave radar and the monocular cam-
era are two vehicular sensors commonly used for vehicle detection
and tracking. Despite their advantages, the drawbacks of these
two sensors make them insufficient when used separately. Thus,
the fusion of these two sensors is considered as an efficient way to
address the challenge. This paper presents a collaborative fusion
approach to achieve the optimal balance between vehicle detec-
tion accuracy and computational efficiency. The proposed vehicle
detection and tracking design is extensively evaluated with a real-
world data set collected by the developed intelligent vehicle. Exper-
imental results show that the proposed system can detect on-road
vehicles with 92.36% detection rate and 0% false alarm rate, and
it only takes ten frames (0.16 s) for the detection and tracking of
each vehicle. This system is installed on Kuafu-II intelligent vehicle
for the fourth and fifth autonomous vehicle competitions, which is
called “Intelligent Vehicle Future Challenge” in China.

Index Terms—Intelligent vehicle, vehicle detection and track-
ing, sensor fusion, MMW radar, monocular camera.

I. INTRODUCTION

INTELLIGENT vehicle technologies have significantly im-
proved owing to the effort of both the automotive industry

and many other fields in recent years [1]. The increasing popu-
larity of intelligent vehicles and the advanced driver assistance
system (ADAS) offers the potential to significantly enhance the
safety and convenience of drivers. Currently, ADAS has been
installed in luxury cars and even in several entry-level cars as an
intelligent vehicle application. In ADAS or intelligent vehicle
systems, on-road vehicle detection and tracking is the first step
to understand the surrounding environment. Its robustness and
reliability can have a direct impact on the stability and safety
of the entire system. Thus, the design of vehicle detection and
tracking system has elicited considerable attention from both
the academe and industry.

The millimeter-wave (MMW) radar and monocular camera
are two mainstream sensors for vehicle detection and tracking
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in intelligent vehicles. The MMW radar detects objects by
emitting a millimeter-wave radio signal and analyzing the fre-
quency shift in reflections. It can operate fairly consistently
in different weather conditions, hence many researches use it
for vehicle application and navigation [2], [3]. The monocular
camera is also widely utilized because it can provide a rich data
source from which additional information and context can be
surmised for advanced surround perception. In addition, given
that cameras are less expensive than other sensors, vision-based
vehicle detection for driver assistance has received considerable
attention over the last decades [4]–[7].

Despite their advantages, the drawbacks of these two sensors
make them insufficient when used separately for vehicle detec-
tion and tracking. The MMW radar’s measurement is limited
in terms of spatial resolution and is rather noisy because of
false alarm detection [8]. The monocular camera is sensitive to
light and weather conditions and requires sophisticated com-
putational intensity to guarantee high accuracy; hence, these
mono-vision methods [5], [9]–[11] either can not meet the
real-time requirement or have poor detection rate. Given these
limitations, the combination of these two sensors [12]–[15]
is considered as an efficient means to significantly increase
detection accuracy while reducing detection noise. However,
the majority of previously proposed fusion approaches [12],
[15] fuse detection results from these two sensors in the end
stage. Although the detection results are improved, the compu-
tational intensity resulting from vision computing remains high.
Hence, several studies proposed the use of machine learning
methods for vision-based vehicle detection to improve detec-
tion accuracy with reduced computational intensity. Liu et al.
[16] applied a SVM-based classifier to detect shadow segments
below on-road vehicles. Chavez-Garcia et al. [17] and Vu et al.
[18] used HOG features and boosting-based classifiers to de-
tect vehicles, where helps from laser sensors are also needed.
However, the resulting accuracy of machine learning methods
is largely dependent on the training dataset of the experimental
environment; thus, poor results may be obtained in an unfa-
miliar environment. To address this issue, Alessandretti et al.
[19] and Kadow et al. [20] proposed the fusion of these two
sensors in the early stage; the MMW radar performs detection
in a region of interest (ROI) on the captured image and searches
for vehicle features within the ROI. This type of fusion method
can significantly reduce the computational intensity of vision
computing and hence is suitable for practical use in intelligent
vehicles. Nevertheless, the detection accuracy of this simple
early-stage fusion is unsatisfactory, especially in scenarios that
require high reliability.

1524-9050 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Fig. 1. The hardware platform of our “Kuafu-II” intelligent vehicle.

This study is also interested in fusing the sensors of MMW
radar and monocular camera for on-road vehicle detection and
tracking. Compared with the previous fusion-based vehicle
designs, the proposed fusion method employs a more robust and
efficient vision-based vehicle detection in the ROI provided by
MMW radar, to improve the detection accuracy and reduce the
false alarm rate from MMW radar. Moreover, the trajectories
for both monocular camera and MMW radar are generated and
compared in the end stage to further improve the detection
accuracy and eliminate the false alarm that is very difficult to
distinguish by simply using vision-based methods. Therefore,
the proposed vehicle detection and tracking method achieves
a much better trade-off among detection rate, false alarm rate
and computational efficiency. To evaluate the proposed vehicle
detection and tracking system, real-world experimental data
are collected with Kuafu-II intelligent vehicle platform. The
experimental results demonstrate that the proposed system can
detect on-road vehicles with a 92.36% detection rate of and 0%
false alarm rate. Each potential vehicle detection and tracking
only takes 0.16 s at the frame rate of 60 Hz.

The rest of this paper is organized as follows. Section II
briefly describes the system platform and sensor calibration.
Section III presents the proposed vehicle detection and tracking
algorithm. The performance and efficiency of the proposed
method are extensively evaluated in Section IV. Section V
presents the conclusion.

II. SYSTEM PLATFORM AND SENSOR CALIBRATION

A. System Platform

The intelligent vehicle platform for the presented techniques
and experiments in this study is based on a 1.6 L Tiggo SUV
manufactured by Chery Automobile Co. and called “Kuafu-II.”
Kuafu-II was developed in 2008 and participated in the 4th and
5th “Intelligent Vehicle Future Challenge (IVFC),” a unmanned
vehicles competition organized by Natural Science Foundation
of China (NSFC), since 2009. In the Kuafu-II intelligent vehi-
cle, an MMW radar and a monocular camera are installed. The
MMW radar is a Delphi ESR bi-mode radar mounted on the
front bumper, and the camera is a PointGray FMUV-03MTC
color camera mounted behind the front windshield (as shown
in Fig. 1). The detailed specifications of these two sensors are
presented in Table I. Both the MMW radar and monocular
camera are connected to a notebook computer with an Intel i7

TABLE I
SPECIFICATIONS OF MMW RADAR AND MONOCULAR CAMERA

Fig. 2. Illustration of the spatial calibration process. The poles are regularly
arranged and detected by the MMW radar and the monocular camera.

3.0 GHz CPU and 8 GB DRAM. The computer is placed in the
trunk as the computation center. The MMW radar detects the
vehicles in front of the vehicle and transmits the relative speed
and position of objects to the computer through a CAN bus. The
camera captures the road scene at the frame rate of 60 Hz and
transmits the uncompressed video sequences to the computer
through a USB cable. The notebook computer is in charge of
sensing data processing, vehicle detection and tracking.

B. Spatio-Temporal Calibration

The relationship between the detection results of MMW
radar and the corresponding image regions can be described
by the prospective transformation. MMW radar scans on a
horizontal plane (radar plane) and produces the radial distance
r, the angle θ and the relative radial velocity v of each target in
front of the equipped vehicle. The detected result can also be
described as (x, y), where x = rcos(θ) and y = rsin(θ). For
the monocular camera, the detected position of the target can
be regarded as (u, v) on the image plane. A calibration method
is proposed to estimate the transformation between radar plane
and image plane through equation (1). The transformation
matrix is illustrated in equation (2).{

u = a1x+a2y+a3

a7x+a8y+a9

v = a4x+a5y+a6

a7x+a8y+a9

(1)

A =

⎡
⎣a1 a2 a3
a4 a5 a6
a7 a8 a9

⎤
⎦ . (2)

The procedure of the proposed calibration method is briefly
discussed below. As shown in Fig. 2, three tall and thin poles are
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regularly arranged and detected by the MMW radar. The image
frame is simultaneously captured by the camera. Assuming that
the reflector’s reflection points on the detected pole are at the
same height as the mounted position of MMW radar, locating
the object detected by MMW radar on the image plane becomes
convenient, and the pixel of the reflection point can be selected.
With deferent spatial arrangements of poles, nine datasets of
(x, y) and (u, v) are obtained for equation (3) to estimate the
projective transformation matrix.⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x− u ∗ x 0
y 0
1 0
0 x− v ∗ x
0 y
0 1

−u ∗ x −v ∗ x
−u ∗ y −v ∗ y
−u −v

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1
a2
a3
a4
a5
a6
a7
a8
a9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= [0 0]T . (3)

The frame rate of camera is 60 fps, which is the same
as the detection speed of MMW radar. Temporal calibration
was performed by externally triggering camera to allow for
synchronous detection with MMW radar.

III. PROPOSED VEHICLE DETECTION AND TRACKING

A. Overall Architecture for Radar and Vision Fusion

Human vision system presents an interesting and efficient
obstacle detection and tracking system. Two types of cells
in the retina, i.e., rods and cones, are involved in obstacle
detection and tracking. The rods are highly sensitive to moving
objects and can quickly identify the position of detected objects.
The cones are highly sensitive to features, including color
and texture, and is thus suitable for obstacle detection and
tracking. These two types of cells interact with each other in the
back-end process to further improve the accuracy of detection
and tracking. Owing to the “collaboration” between the rods
and cones, human vision system can efficiently achieve high-
speed and accurate vehicle detection. MMW radar and camera
in intelligent vehicles act similarly to the rods and cones in
human vision system. This similarity motivates us to design the
proposed radar and vision fusion system for on-road vehicle
detection and tracking.

The overall architecture of the proposed detection and track-
ing approach is illustrated in Fig. 3. Similar to the rods in
human vision system, MMW radar detects on-road vehicles and
transmits the location and size of the region of interest (ROI) to
the image sequences captured by the monocular camera. Then,
the vision processing module generates a square boundary
in the image frame according to the transmitted information on
ROI and employs the active contour method to detect vehicles
within the square boundary. If the active contour method fails,
it is a false alarm of MMW radar and vision processing module
should eliminate this detection; otherwise, the detected contour
is utilized by the following vehicle tracking and trajectory
generation in the video sequences. The radar processing module
also generates a trajectory using the information from MMW

Fig. 3. Overall architecture of the proposed vehicle detection and tracking
system.

radar. These two trajectories, generated from vision and radar,
were then compared and verified to confirm whether the detec-
tion and tracking are valid. The interaction between vision and
radar should be on the same reference plane. This condition
can be achieved by employing projective transformation, the
parameters of which are generated during sensor calibration.

Compared with conventional vision-radar fusion approaches,
the proposed approach has the following advantages.

1) The computational intensity of vision processing can
be significantly reduced by using the ROI provided by
MMW radar.

2) The active contour detection method employed in vision
processing can effectively eliminate the false alarm in-
curred by MMW radar.

3) Comparison and verification of trajectories generated by
vision and radar can improve the overall accuracy of
vehicle detection and tracking.

The overall architecture can achieve an optimal balance
among accuracy of detection and tracking, real-time perfor-
mance and computational efficiency.

B. Vehicle Detection

Because of the accurate ROI provided by MMW radar, the
sensitivity of vision processing to complex environment is
largely compensated. Therefore, we can use the efficient feature
detection method to detect vehicle within ROI. The proposed
vehicle detection method consists of two modules, namely,
rectangular boundary generation and active contour detection.
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The rectangular boundary generation marks a rectangular of the
vehicle according to the ROI, and the active contour technique
detects a vehicle within the marked rectangular. The ROI is a
square with side length 3 m. Its mapping in image sequences
also depends on the distance of the vehicle. The symmetry
features of ROI provide a remarkable clue for the existence
of a vehicle. Owing to the visual appearance or aesthetics of
automobiles, the image of the rear of the vehicle shows a visual
appearance of symmetry about a vertical axis, which is usually
similar to the vertical axis of ROI. Finding such symmetry
axis to localize the vehicle is the first step after rectangular
boundary generation. Conventional gray-level symmetry detec-
tion is based on the differences among gray-level intensities of
pixels, which are time consuming and sensitive to noises in the
outside environment. Broggi et al. [21] proposed a symmetry
detection algorithm based on edge symmetry to reduce the
computation cost and increase the detection accuracy. However,
this method cannot efficiently discriminate the edge symmetries
of the vehicle from that of other unrelated local details. In
this study, we developed a symmetry detection algorithm using
the statistics of symmetrical edge point pairs and a properly
sized bounding box to generally represent the symmetrical
relationship among pixels.

The proposed symmetry detection algorithm is described
below. First, the Sobel operator is utilized to calculate the edge
image. Second, for each line of the edge image, the numbers
of symmetrical and non-symmetrical point pairs Pos(x) and
Neg(x) with respect to x point are calculated as follows:⎧⎪⎨

⎪⎩
x =

(xi+xj)
2

Pos(x) = Pos(x) + 1(xi, xj ∈ O)

Neg(x)= Neg(x) + 1(xi �∈ O||xj �∈ O)

(4)

where O is the edge point space, i and j represent different
columns of points, and xi and xj are point pairs selected from
the same row in the covered bounding box whose height and
width equal to half of the height and width of ROI, respectively.
Third, Pos(x) and Neg(x) calculated from equation (4) are
utilized to calculate the intensity of symmetry as follows:

Sr(x) =
2Pos(x)
S(x)

(
1 − 2Neg(x)

W (x)

)
(5)

where S(x) is the total number of symmetrical point pairs and
W (x) is the total number of point pairs. These two variables
are theoretically two times larger than the maximum value of
Pos(x) and Neg(x) in the same bounding box. Global symmet-
rical intensity is calculated with respect to the entire ROI using
the following equation.

Sg(c) = Pos(c)− Neg(c) (6)

where c is the position of each vertical line in ROI. Finally,
Sr(x,w) in the same column and the corresponding Sg(c)
with c equals to x are weighted and summarized, the column
with the peak value is the detected position of the vertical
symmetry axis in ROI. This procedure can locate the position of
the vehicle horizontal center with high accuracy under various
outside environment.

Based on the assumption that the distribution of color in the
rear image of the detected vehicle is symmetrical and simple,
a histogram algorithm was utilized to precisely locate the left
and right boundaries of the vehicle with the help of the detected
center position. The histogram algorithm consists of three steps.
Let h andw represent the height and width of ROI respectively.

• In step 1, the 32-bins 3D color histogram arrays hs in
the local window (h× w) are counted as the histogram
template of the detected vehicle.

• In step 2, the 32-bins 3D color histograms of left part
histl(x) and right part histr(x) in local windows (from
h× w/8 to h× w/2) are counted. The similarities be-
tween histogram template hists and candidate histograms
histl(x) and histr(x) are computed with the following
equation:

S(x) =
hist∗(x) · hists

‖hist∗(x)‖ ‖hists‖
. (7)

• In step 3, we calculate the leftmost position xl and right-
most position xr of S(x) with regard to a threshold θ. In
order to get a proper value for θ, a course-to-fine strategy
is applied. We firstly divided the [0 1] interval into ten
periods. After voting by similarity values, the period with
highest vote is treated as the threshold region. Finally, θ
equals to the weighted mean of this threshold region. Let s
is the center position of the detected vehicle. The detected
left and right vertical boundaries of the vehicle can be
described as s− xl and s+ xr on the image plane.

The shadows under the vehicle are remarkable features
that always exists under various light conditions. Hence, the
localization of the bottom boundary of the vehicle in ROI was
performed by detecting the position of the shadow under it. The
appearance of a shadow is always a dark area in the image.
Thus, the upper bound of this area can be efficiently located
by calculating the first-order and second-order derivative of the
gray-level intensity. We let I represent the Sobel edge image
and (u, v) represent the 2D coordinates on the image plane. The
calculation of the horizontal gradient Grad(x) of the gray-level
intensity is from the bottom to the middle of ROI.

Grad(x) =
W∑
u=1

‖I(u, x+ 1)− I(u, x)‖ . (8)

Then, for each row of the image, if Grad(x) is larger than σ1

and the ‖Grad(x) − Grad(x− 1)‖ is larger than σ2, current
line x is regarded as the candidate position for the bottom
boundary. The calculation is continued until the next candidate
position x′ is detected. If x− x′ < σ3, then x′ is discarded and
the second step is repeated. Otherwise, x is outputted as the
detected position of the bottom boundary in ROI.

After these procedures, the rectangular boundary is gener-
ated by the left and right boundaries s− xl and s+ xr, the
detected bottom boundary, and the top boundary of ROI. Inside
this rectangular boundary, the active contour algorithm [22] is
employed to extract the accurate contour of the rear image of
the detected vehicle. We resized the rectangular boundary to
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less than 50 × 50 pixels to reduce the computational intensity.
Although this algorithm provides the contour of the vehicle for
each radar detection, MMW radar may perform false detection
and no vehicle exists in ROI. To address this, we further confirm
the detection by analyzing the relative distance size and the
rectangular boundary on the MMW radar plane and eliminate
the detection with extremely large or small size.

C. Vehicle Tracking

The proposed vehicle tracking design is a typical generative
tracking method [23], which usually includes the following
five components, i.e., target region, appearance representation,
motion and position representation, method and model up-
dating. In the proposed vehicle tracking method, the target
region is described as a bounding box. The locality sensitive
histogram approach and the uniform motion model are used for
appearance and motion representation respectively. Histogram
matching is chosen as the method, and the model updating is
done by selecting the best matching position of the candidate
histogram.

It should be noted that, the conventional image histogram
does not have the spatial information of pixels and thereby
is sensitive to noise. The locality sensitive histogram is more
appropriate according to the evaluation in [24]. Hence, the
locality sensitive histogram is employed for the appearance
representation and can be described as follows.

Weight(u, v) = 1 − (u− cu)(v − cv)

(umax − umin)(vmax − vmin)
(9)

where (u, v) is the 2D coordinates of the pixel, (cu, cv) is
the center position of the local window, and (umax, vmax) and
(umin, vmin) are the bottom right and top left corners of the
local window. In the meanwhile, the predicted position of the
tracked vehicle is calculated on the MMW radar plane for a
better accuracy, thus the projective transformation is deployed
before and after the prediction.

The proposed vehicle tracking algorithm is described below
in detail. We let (u1, v1) and (u2, v2) represent the mass center
of the extracted rear image in the first and second image
frames after the vehicle was detected. R1 and R2 represent the
external rectangle of the considered rear image. First, (u1, v1)
and (u2, v2) on the image plane are transformed to (x1, y1)
and (x2, y2) on the MMW radar plane through projective
transformation. Second, the uniform motion model is utilized to
predict the position (x3r , y3r) in the next image frame, where
two pre-calculated positions (x1, y1) and (x2, y2) are required.[

x3r

y3r

]
=

[
x2

y2

]
+

[
ẋ
ẏ

]
. (10)

After the prediction, the estimated position (x3r , y3r) on the
MMW radar plane is transformed to (u3r, v3r) on the image
plane through projective transformation. In the meanwhile, the
rectangleR3r in the next frame with the same size as R2 around
the candidate position (u3r, v3r) is selected as the candidate
area of the external rectangle. Next, the locality sensitive his-
togram in R2 which is regarded as the histogram template of

the detected vehicle, is calculated. The comparison between the
histogram template and local histogram is operated repeatedly
in each local window which has the same size as R3r and
contains the candidate position (u3r, v3r) in the third frame.
The similarity is calculated as equation (7). The matching
window has three different scales, i.e., 0.9×, 1.0×, and 1.1×
with regard to the original window size, to obtain a more precise
external rectangle R3. Finally, the mass center of R3 is selected
as the predicted position (u3, v3) of the detected vehicle in the
third frame of the image sequences. This detection result is
regarded as an input, and the estimating and matching processes
are repeated for the next few frames to obtain consecutive
detection results.

The trajectory of the detected vehicle on the image plane
is constructed using the consecutive detection results above.
This trajectory is further transformed to the MMW radar plane
through projective transformation for the following comparison
and verification work.

D. Trajectory Comparison and Verification

Although the active contour method can eliminate the major-
ity of false alarm detections from MMW radar, a few invalid
detections can still exist. These can be further filtered by using
trajectory comparison and verification. To achieve zero false
alarm detection, the trajectories generated by the vision and
radar processing modules are further compared and verified to
confirm whether the detection and tracking are valid. The data
association between radar and vision sensors is achieved by cal-
culating the trajectory error which is defined as follows, where
F represents the total amount of frames during vehicle tracking,
n represents the index of frame number, V (n) represents the
trajectory generated from video sequences, R(n) represents
the trajectory generated from MMW radar and E represents
the trajectory error. E is calculated by the Euclidean distance
between two position trajectories and two speed trajectories
estimated by adaptive Kalman filter [25].

E =

√√√√1
F

[
F∑

n=1

(V (n)−R(n))2+

F∑
n=1

(
dV (n)

dt
− dR(n)

dt

)2
]
.

(11)

To evaluate the trajectory error E, the distribution of the
detection error of each sensor is assumed to be Gaussian
distribution. According to the data sheet of MMW radar, its
detection standard deviation is 1.3 m. Meanwhile, the detection
standard deviation of the proposed vision processing module is
2.36 m according to the statistics from our experimental dataset.
The probability distribution of the trajectory error is shown
in Fig. 4.

According to Fig. 4, the range of 97% confidence interval
of this error is less than 2.4 m. Under this criterion, if the
distance between two generated trajectories is more than 2.4 m,
this case is treated as a false alarm detection of MMW radar.
Although the active contour detection can effectively reduce
the false alarm from MMW radar, the false alarm rate is still
unsatisfactory, as false alarm is very annoying to intelligent
vehicle or ADAS. False alarm after the active contour detection
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Fig. 4. Probability distribution of the trajectory error. The horizontal axis
shows the calculated average Euclidean distances between trajectories accord-
ing to the proposed criteria, and the vertical axis shows the corresponding
probabilities.

Fig. 5. ROI estimation. Red squares indicate the calculated ROI dealing with
vehicles in different ranges: (a) far range, (b) medium range, and (c) short range.

can be classified as two cases: (1) false alarms that exist during
a very short period, e.g. less than two image frames; (2) false
alarms that exists during a relatively long period. Both of these
two cases can be addressed by using trajectory comparison and
verification. In the case (1), vision processing can not generate
the trajectory; In the case (2), the trajectory generated by vision
processing is irregular and largely different from the trajectory
from MMW radar, hence can be easily eliminated.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The proposed vehicle detection and tracking system was
implemented in our intelligent vehicle Kuafu-II. Real-world
radar and image sequences were captured by Kuafu-II for the
experiment. Our dataset consists of 762,256 frames of the
MMW radar’s detection and corresponding video sequences
under various traffic conditions, including many challenging
scenarios such as poor illumination or low contrast. These video
sequences can be considered as a general representation of the
Chinese urban traffic environment. The vehicles detected by
both sensors were manually labeled as ground truth to evaluate
the performance of the algorithm.

A. Vehicle Detection Results

Figs. 5–8 illustrate the procedure and results of the proposed
vehicle detection, which includes ROI localization, symmetry
detection, rectangular boundary generation, and active contour
detection. The pre-calculated ROI is a square area whose map-
ping in the image depends on the distance between the targeting
vehicle and the equipped vehicle. Fig. 5 depicts three calculated

Fig. 6. Symmetry feature detection comparison between the proposed method
and reference [21]. The red lines represent the detection results of the proposed
method, and the black lines represent the detection results of [21].

Fig. 7. Rectangular boundary detection. Three detection results with different
kinds of vehicle are illustrated. The red lines mark the central position. The left
and right blue lines mark the detected horizontal boundaries. The yellow lines
mark the detected vertical boundary for the bottom shadow.

Fig. 8. Active contour detection. The red curves mark the detected contour of
the corresponding vehicle.

ROIs under different distance; the black dot represents the
MMW radar’s return point, and the red square around this
point is the corresponding ROI. The size of ROI is carefully
selected to fully cover the rear image of the detected vehicle.
For the symmetry detection, which is the first step in rectan-
gular boundary generation, Fig. 6 shows a comparison of the
proposed symmetry detection algorithm and a reference method
[21]. As the figure shows, the proposed algorithm obtains
more robust and accurate results under a complicated traffic
environment, which includes different types of vehicle, multiple
vehicles in the same ROI and poor illumination conditions.
The left and right boundary are located with regard to the
detected symmetry axis. The bottom boundary is generated
by the gray-level intensity information. Fig. 7 illustrates the
rectangular boundary generation dealing with various types of
vehicles. We choose σ1 as 5 and σ2 as 3 in the algorithm during
our experiments. The active contour method was conducted
in the generated rectangular boundary as shown in Fig. 8,
where different vehicles have different shapes of contour ac-
cording to the corresponding gray-level gradient information.
Fig. 9 clearly describes the result in each step of the proposed
vehicle detection algorithm.

After the active contour detection, the vehicle detection rate
is 95.74% and the false alarm rate is 1.18%. The proposed
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Fig. 9. One example of the detected results by the proposed vehicle detection
algorithm. The result in each step of the algorithm is shown respectively.
(a) rectangular boundary detection, (b) active contour detection, and (c) the
tailored rear image.

Fig. 10. Challenging scenarios that the proposed approach fails.

vehicle detection method fails at several challenging scenarios,
as shown in Fig. 10. These scenarios generally contain the
video frames with very poor illumination or contrast, hence are
very challenging to computer vision algorithms. The vehicle
detection rate and false alarm rate can be further optimized by
the following vehicle tracking and verification stages.

B. Vehicle Tracking and Verification Results

A locality sensitive histogram algorithm was operated to
track the rear image of the vehicle in the image sequences. A
white minibus was tracked for 30 frames as an demonstration
of the tracking algorithm. The 1st, 15th, and 30th frames
are shown in Fig. 11(a)–(c) respectively. The detected vehicle
executed lane changing and forward-car overtaking maneuver.
Fig. 11(d) shows the generated trajectory under the MMW
radar’s detection reference system after projective transfor-
mation, which properly reveal the maneuvers of the tracked
vehicle.

Fig. 12 illustrates three consecutive frames of tracking results
for four different vehicles. The rectangle in light blue represents
the position of the detection in last frame, and the rectangle
in dark blue represents the detection in the current frame.
The selected vehicles with distinct colors and shape features
(i.e., saloon, minibus, truck, and sedan) generally represent
different types of on-road vehicles. The figure shows that the
proposed algorithm can successfully track these vehicles under
different traffic environments and light conditions. In addition,
the changing of the traffic lanes in the sequential frames shows
the moving of our intelligent vehicle.

The trajectories generated by the vision and radar processing
modules are further compared to verify the detection. The
comparison of trajectories under the same reference system of
a valid vehicle detection and two false alarm detections are
illustrated separately. Fig. 13(a) shows the two similar trajec-
tories when a valid vehicle is detected. Fig. 13(b) describes the

Fig. 11. One 30 frames tracking example. A white minibus is tracked with
three single frames of results shown as (a) the first, (b) the middle, and (c) the
last frame. (d) Generated trajectory of the vehicle.

comparison of speeds calculated from these trajectories. Using
the proposed criteria, the trajectory error between these two
trajectories is 0.4750 m, which confirms the validation of the
detected vehicle. A false alarm instance is shown in Fig. 14(a),
where the black dot represents the radar return point that only
exists in one frame, hence no trajectory can be established.
Fig. 14(b) provides a false alarm tracking instance, where the
trajectory error between MMW radar and vision processing
is abnormally large. After tracking through vision processing,
the trajectory error between these two trajectories is as high as
6.9725 m. Hence, this instance is treated as a false alarm.

C. Performance and Efficiency Analysis of the Overall System

Three evaluation criteria, i.e., vehicle detection rate, false
alarm rate, and time cost per frame, were used in our experiment
with regard to the manually labeled ground truth. The exper-
iment included 1,820 detected vehicles and 160 false alarm
instances generated by the MMW radar. Table II shows the
statistic results of the proposed fusion system in our experi-
ment. The false alarm rate of MMW radar is 8.08%, which is
obviously unacceptable in the practical design. On the contrary,
the proposed fusion system successfully detects 1681 targeting
vehicles and 160 false alarms; the vehicle detection rate is
approximately 92.36%, and the false-alarm instances are all
distinguished and eliminated. The reasons lead to 139 failed
detection instances including challenging lighting conditions,
tracking failed situations and crowded situations. All these
advantages are critical to the vehicle detection module design
deployed on the intelligent vehicle.

The proposed detection and tracking algorithm was then
implemented with a multi-thread program framework with
carefully optimized C++ codes. To reduce the time required
by the vision processing module, the generated rectangular
boundary was resized to no bigger than 50 × 50 for the
active contour detection algorithm. The analysis of execution
time of the system is shown in Table III. Fig. 15 shows the
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Fig. 12. Examples of vehicle tracking results. Three consecutive frames for four different kinds of vehicles are illustrated: (a) a black saloon, (b) a white minibus,
(c) a truck, and (d) a white sedan.

Fig. 13. An example for valid vehicle detection during trajectory comparison
and verification. (a) The generated trajectories from MMW radar and vision
processing, and (b) the corresponding speed trajectories.

Fig. 14. Examples for false alarm detections during trajectory comparison and
verification. (a) One false-alarm instance pointed by MMW radar. (b) The
trajectories generated in the case of false-alarm.

order and time cost of each processing part in the proposed
vehicle detection and tracking algorithm during one detection
procedure. In our experiment, the frame rate of camera is at
60 Hz, and each vehicle detection and tracking only takes
10 frames. Thus, the detection and tracking result can be
outputted in 0.16 s.

We also evaluate the proposed vehicle detection method by
comparing it with two reference methods, i.e., Alessandretti’s

TABLE II
EXPERIMENT RESULTS

TABLE III
EXECUTION TIME OF EACH PROCESSING PART IN THE PROPOSED

DETECTION AND TRACKING ALGORITHM

Fig. 15. The order and time consuming of each part of the proposed detection
and tracking system during one detection procedure.

method [19] and Kadow’s method [20]. Alessandretti’s method
is based on symmetry features and Kadow’s method is based on
machine learning method. We implemented these two methods
with properly optimized C++ programs. Three defined met-
rics, i.e., vehicle detection rate, false alarm rate, and time cost
per frame, were used. Fig. 16 shows the comparison among
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Fig. 16. Performance comparison among the proposed method, Alessandretti’s
method [19] and Kadow’s method [20]. (a) Vehicle detection rate, (b) False-
alarm rate and (c) execution time.

these methods using our real-world experimental dataset. Ex-
perimental results show that the proposed system can detect
on-road vehicles with 92.36% detection rate and 0% false
alarm rate. The time cost per frame of the proposed system is
32.21 ms. For Alessandretti’s method, several of MMW radar’s
false alarm detections were verified. However, its overall per-
formance is insufficient because of its sensitivity to unrelated
details. Kadow’s method provides the worst performance in
our experiment, even though their time cost per frame is the
shortest. Kadow’s method incurs the highest false alarm rate
due to the diversities and complexity in traffic scenes and traffic
elements.

We note that the proposed MMW radar and mono-vision
fusion system can detect and track several vehicles simul-
taneously by using multiple threads. Thus, each thread can
detect and track one potential vehicle. In our practical hardware
platform which uses 4-core, 8 thread Intel Core i7 CPU, we
can achieve the detection and tracking of 3 nearest vehicles
without any performance lost. As these threads are independent
to each other, the detection and tracking of more vehicles can
be achieved by using more powerful CPU.

V. CONCLUSION

This paper aims at fusing MMW radar and monocular cam-
era for on-road vehicle detection and tracking. The MMW
radar firstly detects the potential vehicle and provides region
of interest. The vision processing module employs symmetry
detection and active contour detection to identify the vehicle
inside the region of interest provided by MMW radar. The
vehicle tracking is also employed for the two sensors. In addi-
tion, the two trajectories generated by MMW radar and mono-
vision are further compared to verify and produce the detection
and tracking result. The experimental results show that the
proposed system can achieve a 92.36% detection rate and 0%
false alarm rate under real-world dataset. Evaluation results
clearly demonstrate that the proposed system achieves a better
trade-off among detection rate, false alarm rate and real-time.
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