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This note derives the governing equations for one dimensional flow with heat addition, also
known as the Rayleigh flow. The model system considered is one dimensional flow (constant
area flow) with heat added per unit mass being of q.

§3.7.1 Differential equations govered the flow property change for δq

Let’s first derive equations describe the changes in flow properties when the flow is heated
by a small amount of heat flux δq.

1. From the continuety equation, we have

ρ1u1 = ρ2u2 (1)

Equation in differential form is d(ρu) = 0

The density change:

dρ

ρ
= −du

u
(2)
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2. From the momentum equation, we have

p1 + ρ1u
2
1 = p2 + ρ2u

2
2 (3)

In differential form, the equation can be written as

d(p+ ρu2) = 0 ⇒ dp+ ud(ρu) + ρudu = 0 (4)

Plug in the continuity equation, cf d(ρu) = 0, we have

dp+ ρudu = 0 ⇒ dp = −ρudu (5)

Plug in the EOS ρ = p
RT

and the definition of the Mach number u2 = M2a2 = M2γRT

into equation (5), we have

The pressure change:

dp

p
= −γM2du

u
(6)

3. From the EOS p = ρRT , we have

dp = R(Tdρ+ ρdT ) ⇒ dT =
dp

Rρ
− Tdρ

ρ
⇒ dT

T
=

dp

p
− dρ

ρ
(7)

Combing equation 6 and equation 2, we have

The temperature change:

dT

T
= (1− γM2)

du

u
(8)

4. The entropy change when δq is added to the flow is

ds = cv
dp

p
− cp

dρ

ρ
(9)
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Substitute the expresses for dp
p

and dρ
ρ

into the above equation, we have

The entropy change:
ds = cvγ(1−M2)

du

u
(10)

5. Now consider the total temperature change. From the definition of T0 = T + u2

2cp
, we

have
dT0 = dT +

1

cp
udu (11)

Since cp =
γR
γ−1

, substitute this into equation , we have

dT0 = dT +
(γ − 1)T

γRT
udu = dT + (γ − 1)TM 2du

u
(12)

Combing equations 9 and 13, we have

dT0 = (1−M2)T
du

u
(13)

Since T0 = T (1 + γ−1
2
M2), we have

The total temperature change:

dT0

T0

=
1−M2

1 + γ−1
2
M2

du

u
(14)

6. For the change of the Mach number, consider M = u√
γRT

, we have

dM = M
du

u
− M

2

dT

T
(15)

Substitute dT
T

into the above equation, we have

The Mach number change:

dM

M
=

1 + γM2

2

du

u
(16)
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We have derived changes of flow properties in terms of the relative velocity change du
u

when
the flow is heated up by a small amount of δq. However, it is not straightforward to calculate
du
u

. We need to recast the above equations into a more easy to calculate way. Considering
heating (cooling) the flow will result in a change in the total temperature, from the energy
conservation equation, one has

T02 − T01 =
q

cp
(17)

For a very small increase in q, i.e., δq, we have dT0 = δq
cp

. One can easily calculate the
total temperature change. Let’s now recast the above relations into functions of dT0

T0
using

equation 15, i.e., the relation between dT0

T0
and du

u
.

Flow properties change when heated by δq:

(1) The density change:
dρ

ρ
= −

1 + γ−1
2
M2

1−M2

dT0

T0

(18)

(2) The pressure change:
dp

p
= −γM21 +

γ−1
2
M2

1−M2

dT0

T0

(19)

(3) The temperature change:

dT

T
= (1− γM2)

1 + γ−1
2
M2

1−M2

dT0

T0

(20)

(4) The entropy change:
ds = cvγ(1 +

γ − 1

2
M2)

dT0

T0

(21)

(5) The velocity change:
du

u
=

1 + γ−1
2
M2

1−M2

dT0

T0

(22)
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(6) The Mach number change:

dM

M
=

1 + γM2

2

1 + γ−1
2
M2

1−M2

dT0

T0

(23)

Next, let’s derive an equation for the total pressure change after the flow is heated with δq.
Considering the entropy change across a normal shock, we have

ds = cp
dT0

T0

−R
dp0
p0

(24)

This equation can also be applied to flow with heat addition, except that dT0

T0
is zero for

normal shock wave and it is nonzero for flow with heat addition. Let equation (22) equals
to equation (25), one arrives at

cvγ(1 +
γ − 1

2
M2)

dT0

T0

= cp
dT0

T0

−R
dp0
p0

(25)

Rearrange the terms, recalling that γ = cp
cv

, one obtains:

(7) the total pressure change:

dp0
p0

= − γ

γ − 1
(
γ − 1

2
M2)

dT0

T0

= −γ

2
M2dT0

T0

(26)

Up to now, one can calculate flow properties change when a small amount of heat δq is added
to the flow starting from location 1. Integrating equations (19-24) and (26), one can obtain
the flow property changes when q is applied to the flow.

§3.7.2 General flow property changes with heat addition

Let’s now discuss how the flow properties will change when heat is added to the flow. For
ease of discussion, let’s tabulate the changes in the following table.

Note the above relations will reverse for heat subtraction. Please verify this
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T0 ↑, q > 0
M < 1 ρ ↓,p ↓,s ↑, M ↑, T0 ↑, p0 ↓, u ↑, T ↑ (M < γ−0.5),T ↑ (M > γ−0.5)
M > 1 ρ ↑,p ↑,s ↑, M ↓, T0 ↑, p0 ↓, u ↓, T ↑

Table 1. Flow property change with heat addition.

yourself.

Now let’s discuss the flow properties on the Rayleigh curve, i.e, in the H − s curve or
equivalently the T − s curve. Combining equation 20 and 21, we have

dT

ds
=

1− γM2

γ(1−M2)

T

cv
(27)

Several key points could be obtained:

(1) There are two branches, one for subsonic flow, one for the super sonic flow.

(2) Heating increases the entropy of the flow. Thus it drives the flow towards the sonic
condition, i.e., increase the Mach number for a subsonic flow and decrease the Mach
number for a supersonic flow.

(3) As h ∝ T , heating the flow will also causes increase in h. But for subsonic flow, there
is a region where the static temperature T decreases with heat addition. The reason
is due to the internal energy being transferred into kinetic energy of the flow. This
critical Mach number can be obtained from equation (21) by setting dT

T
= 0. One

obtains M = γ−0.5.

(4) It is not possible to achieve supersonic flow by heat addition only. However, one can
achieve supersonic flow by first heat up a subsonic flow to sonic condition and then
cool it down to further increase its Mach number. The same method could be used
to slow down a supersonic flow to subsonic flow, i.e, heat a supersonic flow to sonic
condition and then cool it down to further decrease its Mach number.

§3.7.3 Integral forms of the flow properties change for heating up the flow with
q.
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Figure 1. Rayleigh curve for one dimensional flow with heat addition.

Starting from the energy conservation equation, we have

q = cp(T02 − T01) (28)

From the momentum equation, we have

p2 − p1 = ρ1u
2
1 − ρ2u

2
2 = γp1M

2
1 − γp2M

2
2 (29)

p2
p1

=
1 + γM2

1

1 + γM2
2

(30)

From the EOS, we have
T2

T1

=
p2
p1

ρ1
ρ2

=
p2
p1

u2

u1

(31)
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Considering the definition of the Mach number, one obtains

u2

u1

=
M2a2
M1a1

=
M2

M1

(
T2

T1

)1/2 (32)

Plug equation (32) into equation (31), we have

T2

T1

=
p2
p1

u2

u1

=
p2
p1

M2

M1

(
T2

T1

)1/2 (33)

thus,

T2

T1

= (
p2
p1

M2

M1

)2 = (
1 + γM2

1

1 + γM2
2

)2(
M2

M1

)2 (34)

ρ2
ρ1

=
p2
p1

T1

T2

=
1 + γM2

2

1 + γM2
1

(
M1

M2

)2 (35)

For the total pressure ratio, we have

p02
p01

=
p02
p2

p2
p1

p1
p01

= (1 +
γ − 1

2
M2

2 )
γ/(γ−1)(

1 + γM2
1

1 + γM2
2

)(1 +
γ − 1

2
M2

1 )
−γ/(γ−1) (36)

The above equation can be simplified as the following

p02
p01

= (
1 + γM2

1

1 + γM2
2

)(
1 + γ−1

2
M2

2

1 + γ−1
2
M2

1

)γ/(γ−1) (37)

For the total temperature ratio, we have

T02

T01

=
T02

T2

T2

T1

T1

T01

= (1 +
γ − 1

2
M2

2 )(
1 + γM2

1

1 + γM2
2

)2(
M2

M1

)2(1 +
γ − 1

2
M2

1 )
−1 (38)

The above equation can be simplified as
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T02

T01

= (
1 + γM2

1

1 + γM2
2

)2(
M2

M1

)2(
1 + γ−1

2
M2

2

1 + γ−1
2
M2

1

) (39)

As heating will increase the entropy of the flow. This increase in entropy can be calculated
using

s2 − s1 = cp ln T2

T1

−R ln p2
p1

(40)

s1 − s1 = cp ln[(1 + γM2
1

1 + γM2
2

)2(
M2

M1

)2]−R ln(1 + γM2
1

1 + γM2
2

) (41)

Note that all the flow property ratios are functions of both M1 and M2 for a given
gas (or γ). (Recall that the flow property ratio of a normal shock is only function of M1

and γ.)

So how to solve a problem practically?
Given conditions in region 1, thus q and T01 can be obtained ⇒ T02 ⇒ M2 ⇒ p2, T2, ρ2, p02, T02, ρ02, ds.
However, it is difficult to solve M2 from equation (39) as T02

T01
is a complex function of M2.

A more practical approach. Consider the example shown in figure 2. For the given condition
in region 1, let the amount of heat needed to achieve M2 = M∗ = 1 state be q∗. If q1 is added
to the flow, it will change the flow properties at region 2, result in M2 = 1.5, for example.
Then starting from M2 = 1.5, another heat q∗1 is added to achieve M = 1 state at the exit of
the flow. One can see that the two states with M=1 are actually the same, i.e., for a given
inlet flow condition, there is a reference state with M∗ = 1 that is independent of how much
heat is added to the system.

The flow properties between the inlet and the reference state can be easily obtained by
setting M2 = 1 in equations (30,34,35,37,39) and (41). The results are listed below:

p

p∗
=

1 + γ

1 + γM2
(42)

T

T ∗ = M2(
1 + γ

1 + γM2
)2 (43)
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Figure 2. Illustration of the reference state with M2 = M∗ = 1.

ρ

ρ∗
=

1

M2
(
1 + γM2

1 + γ
) (44)

T0

T ∗
0

=
(1 + γ)M2[2 + (γ − 1)M2]

(1 + γM2)2
(45)

p0
p∗0

=
1 + γ

1 + γM2
[
2 + (γ − 1)M2

γ + 1
]

γ
γ−1 (46)

Equations (42-46) are plotted in figure 3 for visualization.

Example questions. See textbook Examples 3.13 (p.106), 3.14 (p.107).

Questions: Could you tell the difference between the starred value defined here
and that defined in §3.4 when we discussing the characteristic conditions?

§3.7.4 Thermally chocking phenomena

In this subsection, let discuss on the mass flow rate in the system. From equation (18), we
have q

cpT01
= T02

T01
− 1. Substitute equation T02

T01
= (

1+γM2
1

1+γM2
2
)2(M2

M1
)2(

1+ γ−1
2

M2
2

1+ γ−1
2

M2
1

) into the above
relation, one obtains

q

cpT01

= (
1 + γM2

1

1 + γM2
2

M2

M1

)2(
1 + γ−1

2
M2

2

1 + γ−1
2
M2

1

)− 1 (47)
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Figure 3. Change of flow properties for different Mach number.

Let
d( q

cpT01
)

dM2
= 0, one obtains M2 = 1. It can be proved that this corresponds to a maximum

value of q allowed. In this case, we have

qmax

cpT01

= [
1 + γM2

1

(1 + γ)M1

]2[
1 + γ

2 + (γ − 1)M2
1

]− 1 (48)

Figure 4 plots qmax

cpT01
as a function of M1. It is seen that qmax increases dramatically when M1

decreases. That is to say small Mach number flow can absorb more heat.

What will happen when q > qmax?

For subsonic flow, the pressure wave propagates both downstream and upstream, causing
a readjustment of the flow state. The main consequence is a reduced M1, i.e., change the
inlet condition, allowing a larger value of q. As a result, the mass flow rate will reduced as
demonstrated in equation (49).

ṁ1 = ρ1u1A =
p1
RT1

(M1

√
γRT1)A =

p1M1
√
γ

√
RT1

A (49)

For supersonic flow, a shock wave will formed in the upstream position, resulting in a subsonic
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Figure 4. The maximum heat flux allowed without any change of the inlet condition vs
M1.

flow after the shock to allow more heat addition.

Thermal chocking is very important in the design of combustion engines as the thrust is
directly related to the mass flow rate.

Example questions. See textbook Examples 3.15 (p.110), 3.16 (p.110).
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