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1 Introduction

Kinks are topological defects in 1 + 1 dimensional space-time, and have been applied in

many areas of physics [1, 2]. An important and interesting topic in the study of kinks is the

interaction between kinks and antikinks. In integrable models, such as the sine-Gordon

model, kink and antikink can pass each other after the collision with at most a phase

shift [3]. While in non-integrable models, the outcomes are more complex and sensitively

depend on the initial velocities of kinks. Taking the φ4 model as an example, there ex-

ists a critical velocity vc ≈ 0.26 [4]. When two kinks collide with a high initial velocity

v0 ≥ vc, they simply bounce back after a collision; while when v0 < vc, they form a bound

state called bion (also known as oscillon) [5]. Interestingly, in some intervals of velocity

below vc, instead of forming bion, kink and antikink finally escape after a finite number of

collisions. These velocity intervals are called m-bounce windows (mBWs), if kinks collide

m times before bouncing back [6, 7]. All the bounce windows together form a fractal-

like structure [8, 9]. When generalized to higher dimensions, φ4 kinks can either describe a

braneworld that we are living on [10], or a bubble that we are living inside [11–13]. The col-

lisions between both branes [14–22] and bubbles [23–31] have been extensively investigated

in the literature. More works on interaction of φ4 kinks can be found in refs. [32, 33].

Recently, more and more researchers began to investigate kink interaction in other

non-integrable models, such as models with higher-order polynomial potentials [34–44],

with various kinds of triangular potentials [45–52], with generalized dynamics [53], and

with multi-component scalar fields [54–60].

Some of these works renewed our understanding towards bounce windows. For ex-

ample, it has been widely accepted that in order to form bounce windows, a kink should

have a vibrational mode. It is the resonant energy transition between the vibrational mode

and the translational mode that causes the formation of bounce windows. This mecha-

nism was proposed by Campbell, Schonfeld and Wingate [7], and has been successfully

applied in many cases [61–63]. But some recent works have shown that even there is no
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vibrational mode around a single kink, bounce windows can still be formed [35, 37, 64].

On the other hand, more vibrational modes usually suppress the bounce windows [47, 52].

The development of the collective coordinate method [36, 65, 66] and the discovery of the

relation between bounce windows and the separatrix map [33] also help us to understand

the bounce window phenomenon.

Some other studies found that in higher-order models like φ8, φ10, · · · , due to the long-

range interactions between kinks [43, 67–72], the widely used superposition or production

ansatz is problematic, and should be replaced by the so-called split-domain ansatz [73]. The

force between long-range interacting kinks has been calculated recently [74, 75]. There are

also many other interesting topics on kink interaction, including multi-kink collision [76–

81], boundary scattering [82–85], negative radiation effect [86, 87], creating kink-antikink

pair by colliding particles or wave packages [88–93], spectral walls [94, 95]. For more related

works, see ref. [96].

In this paper, we will consider the collision of two kinks with inner structure in the

energy density. In some models, especially models with generalized dynamics, as the param-

eter varies, the energy density of the kink might split from one peak to multi peaks [97–99].

When this happens, we say that the kink possesses an inner structure. Kinks with inner

structure are similar to, but essentially different from double kinks [100]. Both structures

have a local minimum at the center of the energy density function. But unlike the double

kink case, where the local minimum at the center equals to zero, a kink with inner structure

can have a nonzero local minimum at the center of the energy density function.

Collision between two double kinks was studied in many works, and some new inter-

esting phenomena were found. For example, two-bion escape final states were found in

double sine-Gordon model [49, 61], and in sinh-deformed φ4 model [50]. Unstable kink-

bion-antikink intermediate states were found in refs. [101, 102].

In this work, we will consider a model with coupling between the scalar field and its

kinetic term. Such a generalized dynamics enables the kink to have rich and tunable inner

structures. We will study the collision between a kink and an antikink of this model.

Our model and corresponding static kink solution will be given in the next section. The

numerical simulation of kink collision will be conducted in section 3. Finally, we will end

this paper by a conclusion and outlook in section 4.

2 The model, kink solution and its linear spectrum

In our model, the scalar field φ is coupled to its kinetic term X ≡ −1
2η

µν∂µφ∂νφ via the

following Lagrangian density:

L = G(φ)X − V (φ), (2.1)

where G(φ) = 1 + βφ2n. The parameter β > 0 describes how much our model deviates

from the canonical case (β = 0), while the parameter n = 1, 2, · · · controls the number of

local maxima in the energy density of the kink.

The equation of motion of our model is

Gφ(∂xφ∂xφ− ∂tφ∂tφ) + 2G(∂2
xφ− ∂2

t φ) = 2Vφ, (2.2)
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where the subscript φ denotes the derivative with respect to φ. A static solution φ = φ(x)

can be obtained by solving the following equation:

1

2
Gφ∂xφ∂xφ+G∂2

xφ = Vφ. (2.3)

A powerful method for constructing analytical static kink solutions is the superpotential

method [104, 105], which begins with the assumption

∂xφ = W (φ). (2.4)

By integrating the equation of motion (2.3), one can find a simple relation between the

scalar potential and the superpotential W :

V =
1

2
GW 2 + V0, (2.5)

where V0 is an integral constant, which will be taken as zero.

The superpotential formalism (2.4)–(2.5) makes it easy to find static kink solutions.

For example, by taking

W = kφ0

[
1−

(
φ

φ0

)2
]
, (2.6)

one immediately obtains the φ4 type kink solution

φ = φ0 tanh(kx). (2.7)

Here, φ0 represents the vacuum expectation value of φ(x), and 1/k the width of the kink.

In this work, we will focus on the collision of this type of kink solution, and always take

k = φ0 = 1 for simplicity. Other solutions will be considered in our future works.

The scalar potential takes the following form

V =
1

2

(
1− φ2

)2 (
βφ2n + 1

)
, (2.8)

which is not the standard φ4 double-well potential when β 6= 0, see figure 1.

The energy density of our model takes the form

ρ =
1

2
G (φ) φ̇2 +

1

2
G (φ)φ′2 + V (φ) . (2.9)

In this work, we always use an overdot or a prime to denote the derivative with respect

to time or space. For the static solution in eq. (2.7), the explicit expression of ρ is

ρs = sech4(x)
(
β tanh2n(x) + 1

)
, (2.10)

whose shape is plotted in figure 2. Obviously, ρs splits if β is large enough. Besides, the

number of peaks of ρs increases with n for n ≤ 2, and equals to three as n > 2. Unlike the

case of double kink, where ρs(x = 0) = 0, the solution here always satisfies ρs(x = 0) = 1.

Another important property of the static kink solution is its linear spectrum. Consider

a small linear perturbation δφ(x, t) around the background kink solution φ(x). Defining
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Figure 1. The scalar potential V (φ).

ψ ≡ δφ
√
G and θ ≡ φ′

√
G, one may show that the equation for the perturbation to the

first order is [105]

ψ′′ − θ′′

θ
ψ − ∂2

t ψ = 0. (2.11)

We can expand ψ with the Fourier modes

ψ =

∞∑
a=0

fa(x)eiωat, (2.12)

where the mode functions satisfy a Schrödinger-like equation

f ′′a (x)− Veff(x)fa(x) = −ω2
afa(x), (2.13)

with the effective potential defined by

Veff =
θ′′

θ
. (2.14)

The explicit expression of Veff can be easily obtained after substituting in the kink solution.

Here we only point out that when k = φ0 = 1, its asymptotic behavior is Veff(x→ ±∞) = 4,

and its shape can be found in the lower panel of figure 2.

The eigenvalues of the Schrödinger-like equation, ω2
a, can be calculated numerically.

In figure 3, we plot the eigenvalues of all possible bound states for n = 1, 2, 3 and β ∈ [0 :

2 : 200]. We find that in addition to the translational mode (the zero mode with frequency

ω0 = 0), there are at most two vibrational modes, ω1 and ω2, in the parameter ranges

considered. For small β, both ω1 and ω2 decrease as β increases. But as β becomes larger,

ω1 and ω2 behave differently: the former keeps decreasing monotonically, while the later

increases after reaching a local minimum.
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Figure 2. The energy density ρ(x) and the effective potential Veff.
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Figure 3. The eigenvalues of the bound states ω2
a (a = 0, 1, 2) with the effective potential

Veff(β, n;x), n = 1, 2, 3 and β ∈ [0 : 2 : 200].

3 Kink-antikink collision

In this section, we study the kink-antikink interaction. Since we have no analytical mul-

tikink solution of our model, we will solve the dynamical equation numerically by taking

the widely used superposition ansatz as the initial condition

φ(x, 0) = φK(−x0, v0;x, 0) + φK̄(x0,−v0;x, 0)− 1, (3.1a)

φ̇(x, 0) = φ̇K(−x0, v0;x, 0) + φ̇K̄(x0,−v0;x, 0). (3.1b)
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Here φK(x0, v0;x, t) = tanh(x−x0−v0t√
1−v20

) is a kink initially located at x0 and moving with an

initial velocity of v0 < c = 1, and φK̄(x0, v0;x, t) = −φK(x0, v0;x, t) is the corresponding

antikink solution. The solution of φK(x0, v0;x, t) is obtained by simply boosting the static

kink in eq. (2.7).

For simplicity, we will take periodical boundary condition, and solve the dynamical

equation by using the Fourier spectral method. In this method, N evenly spaced grid

points, or collocation points, are chosen on a finite truncated space domain. The solution

of the scalar field is approximated by a truncated Fourier series

φ(x, t) ≈ φN (x, t) =
N∑
a=1

f(ka, t)e
ikax, (3.2)

where the coefficients f(ka, t) can be determined by requiring that φN = φ at all collo-

cation points. The j-th order spatial derivative of the solution is then approximated by

differentiating φN :

∂jxφ
N (xb, t) =

N∑
a=1

(ika)
jf(ka, t)e

ikaxb ≡
N∑
c=1

Dj
bcφ

N (xc, t). (3.3)

Here Dj is a constant matrix called the derivative matrix and we have used the fact that

f(ka, t) is a linear combination of φ at collocation points.1

As a result, the original partial differential equation (PDE) (2.2) will be transformed

into a system of second-order-in-time ordinary differential equations (ODEs), which can

be easily solved by using the ode45 solver of Matlab (see also refs. [72, 73, 106]). The

numerical precision of this method is determined by two factors: the spatial step size,

which changes with the number of the collocation points N ; and the time step size, which

will be automatically determined by the ode45 solver in accordance with its step changing

algorithm. To improve the precision, one could add more collocation points and tune the

relative and absolute tolerance options of the ode45 solver.2

To check the viability of our numerical results, we test the conservation of the total

energy as the time evolution proceeded. For a single kink/anti-kink moving with velocity

v0, the energy is

E(v0) =

∫ +∞
−∞ ρsdx√

1− v2
0

=

(
4

3
+

4β

4n(n+ 2) + 3

)
/
√

1− v2
0. (3.4)

Then, for a system of a pair of widely separated kink and anti-kink, the exact total energy

is Eexact = 2E(v0), which should be conserved all the time. We can compare our numerical

solution Enum(t) with the exact one by defining the relative error of total energy at time t as

δE(t) ≡ Eexact − Enum(t)

Eexact
. (3.5)

1The specific form of the derivative matrix can be found in [106].
2In Matlab, the default value of the relative and absolute tolerance of ode45 solver are RelTol=10−3 and

AbsTol=10−6. Usually, for a fixed number of collocation points N , more precise solutions can be obtained

by taking smaller RelTol and AbsTol.
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Figure 4. The root-mean-square error δErms as a function of the spatial step size, or equivalently,

the number of collocation points N . The tolerance option of the ode45 solver is set as RelTol= 10−11

and AbsTol= 10−13.

n = 1 n = 2 n = 3

(β, vc)max — (0.04, 0.2711) (0.04, 0.2982)

(β, vc)min (0.9, 0.115) (2.1, 0.083) (2.8, 0.214)

Table 1. The local maxima and minima of vc for n = 1, 2, 3, and β ∈ [0, 200].

Because δE(t) changes slightly with t, it would be more convenient to use the root mean

square error δErms to estimate the long-term behavior of energy conservation. As examples,

we consider two cases with β = 0 and β = 2, n = 1, respectively. The former case is just

the standard φ4 model. For both cases we take x0 = 10, v0 = 0.18 and conduct simulations

within the spatial domain x ∈ [−40, 40] for t ∈ [0, 100]. As can be seen from figure 4, δErms

converges exponentially as the collocation points N increases, until it reaches the relative

tolerance of the ode45 solver.

3.1 Critical velocity and two bounce windows

Our model reduces to the well studied φ4 model when β = 0. Therefore, it is interesting

to see how a nonzero β would change the well-known properties of the φ4 model. In this

section, we will consider the impacts of β and n on the value of critical velocity vc and on

the widths of the two bounce windows.

In figure 5, we plot the critical velocity as a function of the parameter β for cases with

n = 1, 2, 3. For different values of n, the global behavior of vc is similar: it has a global

minimum around βmin ≈ n, and increases monotonically as β > βmin. When β = 200, the

critical velocity increases to about 0.85 for n = 1, 2, 3. It is also interesting to note that for

n = 2, 3, vc has a local maximum around β = 0.04, see table 1.

The model parameters also have impacts on the widths of the two bounce windows

(2BWs). Figure 6 shows how the boundaries (the upper panel) and the widths (the lower

panel) of the first three 2BWs (labeled by m = 1, 2, 3, respectively) vary with β in the case

with n = 1. As can be seen from the figure, when β increases the 2BWs expand slightly
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Figure 5. The critical velocity as a function of β in the case of n = 1, 2, 3.
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Figure 6. The boundaries (upper panel) and the widths (lower panel) of the first three 2BWs

(labeled by m = 1, 2, 3) for n = 1 and β ∈ [0, 0.8]. Here the boundaries and the widths are

calculated at t = 200. v0L and v0R are the left and right boundaries of the two bounce windows.
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at the beginning, then shrink rapidly, and finally close when β is large enough. For n = 1,

the first three 2BWs close at β ≈ 0.4756, 0.6874, 0.77515, respectively.

One may guess that, as β increases further, the fourth, fifth · · · 2BWs will close order

by order. To test this, let us consider the case with n = 1, β = 0.9. In order to get a global

view on the collision results, we consider φ(x = 0) as a function of t and v0. When v0 is

fixed, the function φ(0, t) ≡ φ(x = 0, t) traces out a curve, which has many local minima

with each corresponding to a collision of kinks (some examples can be found in the third

column of figure 7). While, if v0 varies, the local minima form a complex pattern, from

which we can easily see the distribution of mBWs and bions. In φ(0, t) figure, an mBW is

simply an interval of v0 with m dark lines.

In the first column of figure 7, we plotted φ(x = 0) in the range t ∈ [0, 240]and

v0 ∈ [0.03 : 0.0001 : 0.12]. The numerical calculation is conducted by setting the initial

separation of the kinks as 2x0 = 20, and taking 400 collocation points in the domain x ∈
[−50, 50]. The tolerance option of ode45 solver is set as RelTol=10−9 and AbsTol=10−10,

which ensures that δErms ∼ 10−9 − 10−10. From figure 7, we can roughly estimate the

value of critical velocity (vc ≈ 0.116) and figure out the locations of 2BWs. For example,

by magnifying the interval v0 ∈ [0.110, 0.117] we find a clear 2BW around v0 = 0.1119.

In the middle column of figure 7, we plot the energy densities correspond to three

different initial velocities: a (v0 = 0.1111), B (v0 = 0.1119) and C (v0 = 0.1125). In the

cases A and C, kinks collide many times at x = 0, which indicates the forming of bions.

While in the case B, kinks only collide twice before escaping, and is a two bounce collision.

From the φ(0, t) figure of B, we clearly see that there are twelve local maxima between the

two collisions, so B belongs to the 11th 2BW. Point C locates at the center of the 12th 2BW,

which has been closed. So we can conclude that as β increases further, the 2BWs do not

closed order by order. We check these numerical results by taking 800 collocation points.

3.2 Interesting intermediate and final states

In this section, we report some of the interesting phenomena in cases with large β. For large

β, kinks can have rich structures in their energy densities. As we will see in this section,

the collision of two kinks with inner structure can generate some interesting intermediate

and final states.

One of the interesting phenomena is the escape of two bions, which has been found

and discussed in many models such as the double Sine-Gordon model [49, 61, 81], the

sinh-deformed φ4 model [50] and other models with double kinks [101–103]. In previous

works, two-bion final states are usually generated by colliding a pair of double kinks. In

this work, we find that when noncanonical dynamics is considered, it is also possible to

generate two-bion escape final state from a kink-antikink initial state.

In figures 8 and 9, we plot φ(x = 0, t) as a function of v0 for n = 1, β = 10 and

n = 2, β = 10, respectively. For both cases, we can clearly see some two-bion escape

windows. After magnification, narrower two-bion escape windows are found, just as higher-

order bounce windows can be found by zooming in to the boundaries of any of the 2BWs.

Especially, when n = 2, β = 10 two-bion escape windows coexist with a few 2BWs.
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Figure 7. Plot of φ(x = 0, t) as a function of v0 for n = 1 and β = 0.9. Under this parameter setting,

the critical velocity is vc ≈ 0.116, and the widest two bounce window lies around v0 ≈ 0.112, which

is the eleventh two bounce window. Since some higher-order two bounce window (the thirteenth,

for instance) are already closed, we can conclude that the two bounce windows do not close order

by order as β increases.

In addition to the two-bion escape windows, we also find some interesting intermediate

states in the case with n = 1 and β = 20. In figure 10, we plotted φ(x = 0) in the range

t ∈ [0, 140] and v0 ∈ [0.05 : 0.0001 : 0.4]. As can be seen from the figure, there are many

yellow zones, each corresponds to a kink-bion-antikink intermediate state. Such state is

constituted by a bion oscillating in the center and a kink and an antikink symmetrically

moving away from the bion for a while and then come back to collide with the bion at

x = 0. Such intermediate state has also been reported in a model with double kinks [101].

In the range 0.1 . v0 < vc there is at least one such intermediate state, whose life time

(the width of the lowest yellow zone) monotonically increases with v0. In some narrower

windows of v0 one may find three or even four (see point B and point C in figure 10,

respectively.) of such intermediate states after the collision of kinks.

The simulations of figures 8–10 are conducted in spatial domain x = [−50, 50] with

firstly 600 and then checked with 1200 collocation points. The tolerance option of ode45

solver is set as RelTol=10−3 and AbsTol=10−6. The relative error of energy is δErms ∼
10−3 − 10−4 for N = 600, and δErms ∼ 10−5 − 10−6 for N = 1200. The representative

points A, B, · · · are also checked by using more collocation points.

The above three case studies have shown that kinks with inner structure in their

energy density can have similar properties as the double kinks. Now, let us report a novel

phenomenon, namely, the kink intertwined final state. This phenomenon can be observed

– 10 –
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Figure 8. For n = 1, β = 10, v0 ∈ [0.35 : 0.00005 : 0.65] we find two wider two-bion escape windows

in the vicinity of v0 = 0.5 and v0 = 0.55, respectively. We also plot the scalar configurations and

the energy densities corresponding to three initial velocities denoted by A, B and C. Point A

(v0 = 0.3904) corresponds to a bion oscillates at x = 0, while B (v0 = 0.5066) and C (v0 = 0.5767)

are examples of two escaping bions. In the present set of parameters, the energy density has two

peaks (see the third column), and therefore the kinks of our model have similar properties as the

double kink found in double sine-Gordon model.

when β is large enough and v0 & vc. As an example, we consider n = 1, β = 30 and

v0 = 0.77. The evolution of the scalar field as well as the corresponding energy density

can be found in figure 11. We can see that in this case a new structure is formed after

the kink-antikink collision. This structure is similar to bion in the sense that both of them

are spatially localized oscillating solutions. The essential difference between them is that

a bion is a bound state of a kink and an antikink, while the new structure we found here

is a bound state of two kinks or two antikinks (see the right column of figure 11). Another

difference is that bion is formed at some initial velocities below vc, but the intertwined

state of kinks can be formed only when v0 > vc.

We emphasize that neither the (anti-)kinks in the intermediate states nor those in

the interwinded final states are the conventional ones, which connect two vacua φ = ±1.

Instead, the (anti-)kinks in these states connect only one of the vacua with the local

minimum at φ = 0 (see figure 1).

4 Conclusion and outlook

In this work, we investigated the kink-antikink collision in a scalar field model with two

free parameters n and β. When β = 0 we come back to the φ4 model, while when β � 1,

the energy densities of the kinks (antikinks) can have rich inner structure.
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Figure 9. φ(0, t) with n = 2, β = 10. In this case, we find two wider bion escape windows in the

vicinity of v0 = 0.267 and v0 = 0.32. Besides, there are also three obvious two bounce windows

locate around v0 = 0.3495, 0.3597 and 0.3619, respectively. We have chosen six representative points

A-F, and plotted the corresponding field configurations.

Before considering the collision of kinks, we first analyzed the linear spectrum of a

static kink for n = 1, 2, 3 and β ∈ [0, 200]. We found that there are at most three bound

states in this range of parameters. The first bound state is the zero mode with eigenvalue

ω0(n, β) = 0, which represents a translational mode. The second and the third bound

states are two vibrational modes. As β increases, the eigenvalue of the first vibrational

mode ω1(n, β) monotonically decreases, while the second vibrational mode ω2(n, β) has a

local minimum at βmin(n). From figure 3 we can see that βmin(1) < βmin(2) < βmin(3) and

ω2(1, βmin(1)) > ω2(2, βmin(2)) > ω2(3, βmin(1)).

After the analysis of the linear structure, we began to consider how the parameters n

and β would influence the well-known properties of φ4 model. We took the superposition

of a kink φK(−x0, v0;x, 0) and an antikink φK̄(x0,−v0;x, 0) as the initial state, and then

used the Fourier spectral method to simulate the kink-antikink collision numerically. We

first calculated the critical velocity vc in the parameter scope n = 1, 2, 3 and β = [0, 200].

We found that vc(n, β) has a local minimum at β ≈ n. When β � 1, vc approaches to the

speed of light c = 1.

Then we explored the impact of small β on the width of the two bounce windows. For

simplicity, we only considered the first three two bounce windows in the case with n = 1.

We found that as β increases, the two bounce windows first expand slightly and then shrink

– 12 –
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Figure 10. φ(x = 0, t) as a function of v0 for n = 1, β = 20. In this case, we can see the formation

of kink-bion-antikink intermediate states. There are also some two-bion escape windows, one locates

around point A (v0 = 0.603).

rapidly, and finally close at larger β. We also pointed out that although the first three two

bounce windows are closed order by order with the increase of β, one cannot conclude that

all the other two bounce windows are closed in this manner, as a counterexample has been

found in the case with β = 0.9.

After this, we began to discuss the collision phenomena in the case with large β. In

this case the energy density of the kink can have more than one peak, and the kinks can

have similar properties as those of the double kinks. For example, we have found many

two-bion escape windows for n = 1, β = 10 and for n = 2, β = 10. In the later case

we also found the coexistence of two-bion escape windows and two bounce windows. For

larger value of β, for example in the case with n = 1, β = 20 we found the formation of

some kink-bion-antikink intermediate states after the collision of kink and antikink. The

number and the lifetime of these intermediate states depend on the incident velocity v0.

This phenomenon can also be generated by colliding two double kinks [101].

Finally, we reported a novel bound state of two kinks or two antikinks. As an example,

we considered the case with n = 1, β = 30 and v0 = 0.77, but one can also try many other

values of parameters. Two basic requirements for finding this phenomenon are β � 1 and

v0 > vc.

This work revels the fact that kinks with inner structure in their energy density may

have similar properties as those of the double kink solutions. Both can have two-bion escape

final states and kink-bion-antikink intermediate states after a collision. When v0 > vc we

found a new spatially localized oscillating structure, which to our knowledge, has not been
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Figure 11. The intertwined state found at n = 1, β = 30 and v0 = 0.77. The left column shows the

evolution of the scalar field configuration (upper panel) and the corresponding energy density (lower

panel). The right column shows the scalar field configurations at t = 24, 30, 36, from which we can

see that the intertwined state is a bound state of two kinks or two antikinks, which is essentially

different to the bion. The simulations are conducted in spatial domain x = [−50, 50] with firstly

1500 and then checked with 3000 collocation points. Here we only display the solutions in the range

x = [−30, 30]. The tolerance option of ode45 solver is set as RelTol=10−3 and AbsTol=10−6. The

relative error of energy is δErms ∼ 10−3 for N = 1500, and δErms ∼ 10−5 for N = 3000.

reported before. Unlike the bion, which is a bound state of a kink and an antikink, the

new structure we found here is a bound state between two kinks or two antikinks.

As an outlook, we would like to point out that we have not cover all the parameter

ranges, for example, the cases with n > 3 are not discussed. Even for n = 1, 2, 3 we cannot

claim that we have found all the distinct phenomena. As we have shown in subsection 3.2,

the collision result sensitively depends on the values of β and v0, but we have only studied a

few representative values of β. Therefore, it would be possible to find other new phenomena

by considering different parameter settings from ours. Besides, the superpotential we taken

in eq. (2.6) leads to a φ4 type of kink solution, it is easy to generate other kink (for

example a sine-Gorden type of kink) or double kink solutions by simply taking different

superpotentials. As a future direction, one can consider the collision of these kinks in

our model. If one would like to go beyond the present model, there are many other

noncanonical kink models such as those studied in refs. [99, 105]. At present time, only

a few works considered the interactions of noncanonical kinks [53], so this field is worth

further investigation. It is also interesting, despite challenging, to understand how the
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intermediate and final states we reported above are formed. Finally, it would be interesting

to discuss the application of the intertwined two kink final states as a cosmological reheating

mechanism, in parallel to the previous work [17].
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