(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 12.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 384244, 10911] NotebookOptionsPosition[ 372889, 10737] NotebookOutlinePosition[ 373266, 10753] CellTagsIndexPosition[ 373223, 10750] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell["Normal modes for 2D gravitating kinks", "Title", CellChangeTimes->{{3.8481991481964707`*^9, 3.848199189869508*^9}, { 3.8481992294298973`*^9, 3.8481992549453583`*^9}, {3.8481993487628174`*^9, 3.8481993489926715`*^9}},ExpressionUUID->"048a9efa-fda6-437e-938f-\ 2056a9acf573"], Cell["\<\ Written by Yuan Zhong, Xi\[CloseCurlyQuote]an Jiaotong University, 2021-12-12\ \>", "Subtitle", CellChangeTimes->{{3.848221985201179*^9, 3.84822205046614*^9}, { 3.848222590281039*^9, 3.848222615900228*^9}, {3.848276708884247*^9, 3.848276740853429*^9}},ExpressionUUID->"db60f79e-ecf6-48bf-bccf-\ 9dd8704ac7b0"], Cell[CellGroupData[{ Cell[TextData[{ "1. Definition of ", Cell[BoxData[ FormBox[ SubscriptBox["g", "\[Mu]\[Nu]"], TraditionalForm]],ExpressionUUID-> "97746830-c9b1-464f-8d25-b67aad6c979c"], ", ", Cell[BoxData[ FormBox[ SuperscriptBox["g", "\[Mu]\[Nu]"], TraditionalForm]],ExpressionUUID-> "78f6b029-d43b-436b-a451-9888c433ebf6"], " and their perturbations" }], "Section", CellChangeTimes->{{3.848199287184355*^9, 3.8481993348193097`*^9}, { 3.8481993848095427`*^9, 3.8481993970343575`*^9}, {3.848200464808568*^9, 3.8482004794763575`*^9}, {3.8482010327597227`*^9, 3.848201034604717*^9}},ExpressionUUID->"d9cfcc99-1bce-4f5f-bb24-\ 3d7e3239aaf1"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"ClearAll", ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"x", "[", "1", "]"}], "=", "t"}], ";", RowBox[{ RowBox[{"x", "[", "2", "]"}], "=", "r"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"\[Eta]", "=", RowBox[{ RowBox[{"(", GridBox[{ { RowBox[{"-", "1"}], "0"}, {"0", "1"} }], ")"}], "//", "Simplify"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"i\[Eta]", "=", RowBox[{"Inverse", "[", "\[Eta]", "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"(*", RowBox[{"The", " ", "conformal", " ", "flat", " ", "metric"}], "*)"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"a", "[", "r", "]"}], "=", RowBox[{"Exp", "[", RowBox[{"A", "[", "r", "]"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"g", "=", RowBox[{ RowBox[{ SuperscriptBox[ RowBox[{"a", "[", "r", "]"}], "2"], "\[Eta]"}], "//", "Simplify"}]}], ";"}], "\n", RowBox[{"dim", "=", RowBox[{"Length", "[", "g", "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"ig", "=", RowBox[{"Inverse", "[", "g", "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"g", "//", "MatrixForm"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"ig", "//", "MatrixForm"}], "\[IndentingNewLine]", RowBox[{"(*", RowBox[{"definition", " ", "of", " ", SubscriptBox["\[Delta]g", "\[Lambda]\[Sigma]"]}], "*)"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"\[Delta]g", "=", RowBox[{ SuperscriptBox[ RowBox[{"a", "[", "r", "]"}], "2"], RowBox[{"(", GridBox[{ { RowBox[{"h00", "[", RowBox[{"t", ",", "r"}], "]"}], RowBox[{"\[CapitalPhi]", "[", RowBox[{"t", ",", "r"}], "]"}]}, { RowBox[{"\[CapitalPhi]", "[", RowBox[{"t", ",", "r"}], "]"}], RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}]} }], ")"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{"(*", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{ "--", "--"}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]\ }]}]}]}]}]}], "*)"}], "\[IndentingNewLine]", RowBox[{"(*", RowBox[{ RowBox[{"definition", " ", "of", " ", SuperscriptBox["\[Delta]", RowBox[{"(", "1", ")"}]], SuperscriptBox["g", "\[Mu]\[Nu]"]}], "=", RowBox[{ RowBox[{"-", SuperscriptBox["g", "\[Mu]\[Rho]"]}], SuperscriptBox["g", "\[Nu]\[Sigma]"], SubscriptBox["\[Delta]g", "\[Rho]\[Sigma]"]}]}], "*)"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ RowBox[{"\[Delta]1ig", "[", RowBox[{"\[Mu]_", ",", "\[Nu]_"}], "]"}], ":=", RowBox[{"Block", "[", RowBox[{ RowBox[{"{", RowBox[{"\[Rho]", ",", "\[Sigma]"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"Return", "[", RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"\[Rho]", "=", "1"}], "dim"], RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"\[Sigma]", "=", "1"}], "dim"], RowBox[{"(", RowBox[{ RowBox[{"-", RowBox[{"ig", "[", RowBox[{"[", RowBox[{"\[Mu]", ",", "\[Rho]"}], "]"}], "]"}]}], RowBox[{"ig", "[", RowBox[{"[", RowBox[{"\[Nu]", ",", "\[Sigma]"}], "]"}], "]"}], RowBox[{"\[Delta]g", "[", RowBox[{"[", RowBox[{"\[Rho]", ",", "\[Sigma]"}], "]"}], "]"}]}], ")"}]}]}], "]"}]}], "\[IndentingNewLine]", "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"(*", RowBox[{ RowBox[{ SuperscriptBox["\[Delta]", RowBox[{"(", "2", ")"}]], SuperscriptBox["g", "\[Mu]\[Nu]"]}], "=", RowBox[{ RowBox[{"-", SuperscriptBox["g", "\[Mu]\[Rho]"]}], SubscriptBox["\[Delta]g", "\[Rho]\[Sigma]"], SuperscriptBox["\[Delta]", RowBox[{"(", "1", ")"}]], SuperscriptBox["g", "\[Sigma]\[Nu]"]}]}], "*)"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"\[Delta]2ig", "[", RowBox[{"\[Mu]_", ",", "\[Nu]_"}], "]"}], ":=", RowBox[{"Block", "[", RowBox[{ RowBox[{"{", RowBox[{"\[Rho]", ",", "\[Sigma]"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"Return", "[", RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"\[Rho]", "=", "1"}], "dim"], RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"\[Sigma]", "=", "1"}], "dim"], RowBox[{"(", RowBox[{ RowBox[{"-", RowBox[{"ig", "[", RowBox[{"[", RowBox[{"\[Mu]", ",", "\[Rho]"}], "]"}], "]"}]}], RowBox[{"\[Delta]g", "[", RowBox[{"[", RowBox[{"\[Rho]", ",", "\[Sigma]"}], "]"}], "]"}], RowBox[{"\[Delta]1ig", "[", RowBox[{"\[Sigma]", ",", "\[Nu]"}], "]"}]}], ")"}]}]}], "]"}]}], "\[IndentingNewLine]", "]"}]}], ";"}]}], "Input", CellFrame->0.5, CellChangeTimes->{{3.809602823740168*^9, 3.809602878255078*^9}, { 3.8096029157309275`*^9, 3.809602948429166*^9}, {3.8096041715778446`*^9, 3.8096041826047583`*^9}, {3.8096437260953007`*^9, 3.80964375483249*^9}, { 3.8096439013851366`*^9, 3.8096439928814564`*^9}, {3.8096440885628734`*^9, 3.8096441550968304`*^9}, {3.8096464758277063`*^9, 3.809646523609761*^9}, { 3.8096465630630455`*^9, 3.809646575732827*^9}, {3.809646635987788*^9, 3.8096467150421515`*^9}, {3.809647126398962*^9, 3.809647226514409*^9}, { 3.8096472597078204`*^9, 3.809647323297859*^9}, {3.8096475509700274`*^9, 3.8096475675883584`*^9}, {3.809647876873721*^9, 3.8096480498401985`*^9}, 3.8096484597275505`*^9, {3.809648512133343*^9, 3.80964854517445*^9}, { 3.8096806087063026`*^9, 3.809680628199673*^9}, {3.8096807041914377`*^9, 3.809680712111637*^9}, {3.809680858138853*^9, 3.8096808595238543`*^9}, { 3.809680892328293*^9, 3.809680893299883*^9}, 3.8096883575338683`*^9, { 3.809688811434802*^9, 3.8096888124037533`*^9}, {3.8097494524516335`*^9, 3.80974949121174*^9}, {3.8097713577941256`*^9, 3.809771362050928*^9}, { 3.809859410494981*^9, 3.809859536790678*^9}, {3.8098597982907724`*^9, 3.8098598061036587`*^9}, {3.8116807808262267`*^9, 3.811680808287077*^9}, 3.811681080445173*^9, {3.8116819226608896`*^9, 3.8116819283241034`*^9}, { 3.8116824158065767`*^9, 3.811682435691608*^9}, {3.8117151312657433`*^9, 3.8117151505253506`*^9}, {3.811718515159377*^9, 3.8117185758016663`*^9}, 3.811718621585578*^9, 3.8117186920300345`*^9, 3.8117187450919333`*^9, { 3.811718815492416*^9, 3.8117188185160694`*^9}, 3.811719889818961*^9, 3.8117201299134035`*^9, {3.812006906537079*^9, 3.8120069586879225`*^9}, { 3.8120070121766205`*^9, 3.812007031066203*^9}, {3.812101749523254*^9, 3.812101836548542*^9}, {3.812101869338764*^9, 3.812101875406817*^9}, { 3.812101922815805*^9, 3.812102037800542*^9}, {3.812102192200821*^9, 3.812102210312317*^9}, 3.8460177834723587`*^9, {3.846017976474045*^9, 3.846018013870468*^9}, {3.846018073077327*^9, 3.846018117820499*^9}, { 3.8460181861005993`*^9, 3.846018274134432*^9}, 3.8460183878881607`*^9, { 3.846018475513101*^9, 3.846018536096236*^9}, {3.846018567590345*^9, 3.846018604363603*^9}, {3.8460187140514107`*^9, 3.846018766218186*^9}, { 3.846018798748397*^9, 3.846018841321069*^9}, {3.8460191092974787`*^9, 3.846019148261838*^9}, {3.846019180962941*^9, 3.84601920348035*^9}, { 3.84601928126157*^9, 3.846019363362442*^9}, {3.8460194352216*^9, 3.846019441839216*^9}, 3.846019505438302*^9, {3.8460195435874777`*^9, 3.846019544854583*^9}, {3.846019580501397*^9, 3.8460196363222837`*^9}, { 3.8460196710171223`*^9, 3.8460196728825607`*^9}, {3.846019716681467*^9, 3.8460197200306377`*^9}, {3.846019823874769*^9, 3.8460198254360447`*^9}, { 3.8460199439715776`*^9, 3.8460201186378403`*^9}, {3.8460201668647947`*^9, 3.846020252428129*^9}, {3.846020350295665*^9, 3.846020367385654*^9}, { 3.846020401626039*^9, 3.846020431696299*^9}, 3.846021283455677*^9, { 3.8460522002145233`*^9, 3.8460523488395233`*^9}, {3.846065301028891*^9, 3.846065302858897*^9}, {3.8461278378632097`*^9, 3.846127843363679*^9}, { 3.846128726785161*^9, 3.8461287279534903`*^9}, {3.8481994199487123`*^9, 3.8481994485289683`*^9}, {3.8481995143477716`*^9, 3.84819954071402*^9}, 3.848199637628234*^9, {3.84819981400445*^9, 3.8481998350093346`*^9}, { 3.8481998656834087`*^9, 3.848199866571353*^9}, 3.848199901956075*^9, { 3.8481999654297643`*^9, 3.8481999670199413`*^9}, {3.8482001207027645`*^9, 3.848200220526222*^9}, {3.84820026029366*^9, 3.8482003320748158`*^9}}, Background->GrayLevel[0.85], CellLabel-> "In[479]:=",ExpressionUUID->"0a993130-ec43-453d-8d24-485d550e8688"], Cell[BoxData["2"], "Output", CellChangeTimes->{ 3.848199781178624*^9, 3.8481998167395153`*^9, {3.848199849301965*^9, 3.8481998587245045`*^9}, {3.848200323814658*^9, 3.848200333235134*^9}, 3.848201390173539*^9, 3.848206098917498*^9, 3.8482176377467337`*^9}, CellLabel-> "Out[485]=",ExpressionUUID->"371c3ef6-51da-4e4e-a177-911d45cf02fd"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { RowBox[{"-", SuperscriptBox["\[ExponentialE]", RowBox[{"2", " ", RowBox[{"A", "[", "r", "]"}]}]]}], "0"}, {"0", SuperscriptBox["\[ExponentialE]", RowBox[{"2", " ", RowBox[{"A", "[", "r", "]"}]}]]} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellChangeTimes->{ 3.848199781178624*^9, 3.8481998167395153`*^9, {3.848199849301965*^9, 3.8481998587245045`*^9}, {3.848200323814658*^9, 3.848200333235134*^9}, 3.848201390173539*^9, 3.848206098917498*^9, 3.848217637749448*^9}, CellLabel-> "Out[487]//MatrixForm=",ExpressionUUID->"0d89264f-3e10-44bc-bfdc-\ 06e4e7336277"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { RowBox[{"-", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "2"}], " ", RowBox[{"A", "[", "r", "]"}]}]]}], "0"}, {"0", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "2"}], " ", RowBox[{"A", "[", "r", "]"}]}]]} }, GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellChangeTimes->{ 3.848199781178624*^9, 3.8481998167395153`*^9, {3.848199849301965*^9, 3.8481998587245045`*^9}, {3.848200323814658*^9, 3.848200333235134*^9}, 3.848201390173539*^9, 3.848206098917498*^9, 3.848217637752964*^9}, CellLabel-> "Out[488]//MatrixForm=",ExpressionUUID->"6deebb5a-5b47-44f7-9257-\ 5571788d888d"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[TextData[{ "2. Definitions of ", Cell[BoxData[ FormBox[ SubscriptBox[ SuperscriptBox["\[CapitalGamma]", "\[Lambda]"], "\[Mu]\[Nu]"], TraditionalForm]],ExpressionUUID->"25ccb727-98ee-4e33-83fa-7ece99840b20"], ", ", Cell[BoxData[ FormBox[ SubscriptBox["R", "\[Mu]\[Nu]"], TraditionalForm]],ExpressionUUID-> "ca04089b-0501-404f-bc17-0a838141a94c"], ", ", StyleBox["R", FontSlant->"Italic"], ", ... and their perturbations (see Sec. 2 of the paper for details)" }], "Section", CellChangeTimes->{{3.8482010708391995`*^9, 3.8482011766859055`*^9}, { 3.84820121452503*^9, 3.848201223485634*^9}, {3.848201312010487*^9, 3.848201335395714*^9}},ExpressionUUID->"3c5553cb-5657-4e41-bafa-\ 9e24cce448ad"], Cell[TextData[{ StyleBox["NOTE:", FontWeight->"Bold", FontColor->RGBColor[1, 0, 0]], StyleBox[" we use L to denote the Lagrangian of the scalar matter field, \ while use ", FontColor->RGBColor[0, 0, 1]], Cell[BoxData[ FormBox[ RowBox[{"Ltot", "=", RowBox[{ SqrtBox[ RowBox[{"-", "g"}]], RowBox[{"(", RowBox[{"\[ScriptCapitalX]", "+", "\[CurlyPhi]R", "+", "\[Kappa]L"}], ")"}]}]}], TraditionalForm]], FontColor->RGBColor[0, 0, 1],ExpressionUUID-> "04f75aac-d2a4-4b17-b6be-575538a857d9"], StyleBox[" to represent the total Lagrangian. The total action is ", FontColor->RGBColor[0, 0, 1]], Cell[BoxData[ FormBox[ RowBox[{" ", RowBox[{"S", "=", RowBox[{ FractionBox["1", "\[Kappa]"], RowBox[{"\[Integral]", RowBox[{"dtdr", " ", "Ltot"}]}]}]}]}], TraditionalForm]], FontColor->RGBColor[0, 0, 1],ExpressionUUID-> "522bb78f-2d05-4145-a453-df847b4d738d"] }], "Text", CellChangeTimes->{{3.8482122817323303`*^9, 3.848212399789083*^9}, { 3.848212448307255*^9, 3.8482124856518717`*^9}, {3.848213691161994*^9, 3.84821377581199*^9}},ExpressionUUID->"57a23c0e-84ae-40e8-b31d-\ 696ddd08e3bf"], Cell[BoxData[ RowBox[{ RowBox[{"(*", " ", RowBox[{ SubscriptBox[ SuperscriptBox["\[CapitalGamma]", "\[Lambda]"], "\[Mu]\[Nu]"], "=", RowBox[{ FractionBox["1", "2"], SuperscriptBox["g", "\[Lambda]\[Tau]"], RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[PartialD]", "\[Mu]"], SubscriptBox["g", "\[Nu]\[Tau]"]}], "+", RowBox[{ SubscriptBox["\[PartialD]", "\[Nu]"], SubscriptBox["g", "\[Mu]\[Tau]"]}], "-", RowBox[{ SubscriptBox["\[PartialD]", "\[Tau]"], SubscriptBox["g", "\[Mu]\[Nu]"]}]}], ")"}]}]}], " ", "*)"}], "\n", RowBox[{ RowBox[{ StyleBox[ RowBox[{"\[CapitalGamma]", "[", RowBox[{"\[Lambda]_", ",", "\[Mu]_", ",", "\[Nu]_"}], "]"}], FontColor->RGBColor[1, 0, 1]], ":=", "\[IndentingNewLine]", RowBox[{"Block", "[", RowBox[{ RowBox[{"{", "\[Tau]", "}"}], ",", "\[IndentingNewLine]", RowBox[{"Return", "[", RowBox[{ FractionBox["1", "2"], RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"\[Tau]", "=", "1"}], "dim"], RowBox[{"(", RowBox[{ RowBox[{"ig", "[", RowBox[{"[", RowBox[{"\[Lambda]", ",", "\[Tau]"}], "]"}], "]"}], RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"x", "[", "\[Mu]", "]"}]], RowBox[{"g", "[", RowBox[{"[", RowBox[{"\[Nu]", ",", "\[Tau]"}], "]"}], "]"}]}], "+", RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"x", "[", "\[Nu]", "]"}]], RowBox[{"g", "[", RowBox[{"[", RowBox[{"\[Mu]", ",", "\[Tau]"}], "]"}], "]"}]}], "-", RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"x", "[", "\[Tau]", "]"}]], RowBox[{"g", "[", RowBox[{"[", RowBox[{"\[Mu]", ",", "\[Nu]"}], "]"}], "]"}]}]}], ")"}]}], ")"}]}]}], "]"}]}], "\[IndentingNewLine]", "]"}]}], "\[IndentingNewLine]", RowBox[{"(*", " ", RowBox[{ SubscriptBox[ SuperscriptBox["R", "\[Mu]"], "\[Sigma]\[Nu]\[Tau]"], "=", RowBox[{ SubscriptBox[ SuperscriptBox["\[CapitalGamma]", "\[Mu]"], RowBox[{"\[Sigma]\[Tau]", ",", "\[Nu]"}]], "-", SubscriptBox[ SuperscriptBox["\[CapitalGamma]", "\[Mu]"], RowBox[{"\[Sigma]\[Nu]", ",", "\[Tau]"}]], "+", RowBox[{ SubscriptBox[ SuperscriptBox["\[CapitalGamma]", "\[Mu]"], "\[Lambda]\[Nu]"], SubscriptBox[ SuperscriptBox["\[CapitalGamma]", "\[Lambda]"], "\[Sigma]\[Tau]"]}], "-", RowBox[{ SubscriptBox[ SuperscriptBox["\[CapitalGamma]", "\[Mu]"], "\[Lambda]\[Tau]"], SubscriptBox[ SuperscriptBox["\[CapitalGamma]", "\[Lambda]"], "\[Sigma]\[Nu]"]}]}]}], " ", "*)"}], "\[IndentingNewLine]", RowBox[{ StyleBox[ RowBox[{"R", "[", RowBox[{"\[Mu]_", ",", "\[Sigma]_", ",", "\[Nu]_", ",", "\[Tau]_"}], "]"}], FontColor->RGBColor[1, 0, 1]], ":=", "\[IndentingNewLine]", RowBox[{"Block", "[", RowBox[{ RowBox[{"{", RowBox[{"R\[Mu]\[Sigma]\[Nu]\[Tau]", ",", "\[Lambda]"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"R\[Mu]\[Sigma]\[Nu]\[Tau]", "=", RowBox[{ RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"x", "[", "\[Nu]", "]"}]], RowBox[{"\[CapitalGamma]", "[", RowBox[{"\[Mu]", ",", "\[Sigma]", ",", "\[Tau]"}], "]"}]}], "-", RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"x", "[", "\[Tau]", "]"}]], RowBox[{"\[CapitalGamma]", "[", RowBox[{"\[Mu]", ",", "\[Sigma]", ",", "\[Nu]"}], "]"}]}], "+", RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"\[Lambda]", "=", "1"}], "dim"], RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"\[CapitalGamma]", "[", RowBox[{"\[Mu]", ",", "\[Lambda]", ",", "\[Nu]"}], "]"}], RowBox[{"\[CapitalGamma]", "[", RowBox[{"\[Lambda]", ",", "\[Sigma]", ",", "\[Tau]"}], "]"}]}], "-", RowBox[{ RowBox[{"\[CapitalGamma]", "[", RowBox[{"\[Mu]", ",", "\[Lambda]", ",", "\[Tau]"}], "]"}], RowBox[{"\[CapitalGamma]", "[", RowBox[{"\[Lambda]", ",", "\[Sigma]", ",", "\[Nu]"}], "]"}]}]}], ")"}]}]}]}], ";", "\[IndentingNewLine]", RowBox[{"Return", "[", "R\[Mu]\[Sigma]\[Nu]\[Tau]", "]"}], ";"}]}], "\[IndentingNewLine]", "]"}]}], "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"(*", " ", RowBox[{ SubscriptBox["R", "\[Mu]\[Nu]"], "=", SubscriptBox[ SuperscriptBox["R", "\[Lambda]"], "\[Mu]\[Lambda]\[Nu]"]}], " ", "*)"}], "\n", RowBox[{ StyleBox[ RowBox[{"R", "[", RowBox[{"\[Mu]_", ",", "\[Nu]_"}], "]"}], FontColor->RGBColor[1, 0, 1]], ":=", RowBox[{"Block", "[", RowBox[{ RowBox[{"{", "\[Lambda]", "}"}], ",", RowBox[{"Return", "[", RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"\[Lambda]", "=", "1"}], "dim"], RowBox[{"R", "[", RowBox[{"\[Lambda]", ",", "\[Mu]", ",", "\[Lambda]", ",", "\[Nu]"}], "]"}]}], "]"}]}], "]"}]}], "\[IndentingNewLine]", RowBox[{"(*", " ", RowBox[{"R", "=", RowBox[{ SuperscriptBox["g", "\[Mu]\[Nu]"], SubscriptBox["R", "\[Mu]\[Nu]"]}]}], " ", "*)"}], "\[IndentingNewLine]", RowBox[{ StyleBox[ RowBox[{"R", "[", "]"}], FontColor->RGBColor[1, 0, 1]], ":=", RowBox[{"Block", "[", RowBox[{ RowBox[{"{", RowBox[{"\[Mu]", ",", "\[Nu]"}], "}"}], ",", RowBox[{"Return", "[", RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"\[Mu]", "=", "1"}], "dim"], RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"\[Nu]", "=", "1"}], "dim"], RowBox[{ RowBox[{"ig", "[", RowBox[{"[", RowBox[{"\[Mu]", ",", "\[Nu]"}], "]"}], "]"}], RowBox[{"R", "[", RowBox[{"\[Mu]", ",", "\[Nu]"}], "]"}]}]}]}], "]"}]}], "]"}]}], "\[IndentingNewLine]", RowBox[{"(*", " ", SubscriptBox[ SuperscriptBox["\[Delta]\[CapitalGamma]", "\[Lambda]"], "\[Mu]\[Nu]"], " ", "*)"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"\[Delta]1\[CapitalGamma]", StyleBox["[", FontColor->RGBColor[1, 0, 1]], StyleBox[ RowBox[{"\[Lambda]_", ",", "\[Mu]_", ",", "\[Nu]_"}], FontColor->RGBColor[1, 0, 1]], StyleBox["]", FontColor->RGBColor[1, 0, 1]]}], ":=", "\[IndentingNewLine]", RowBox[{"Block", "[", RowBox[{ RowBox[{"{", "\[Tau]", "}"}], ",", "\[IndentingNewLine]", RowBox[{"Return", "[", RowBox[{ RowBox[{ FractionBox["1", "2"], RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"\[Tau]", "=", "1"}], "dim"], RowBox[{"(", RowBox[{ RowBox[{"\[Delta]1ig", "[", RowBox[{"\[Lambda]", ",", "\[Tau]"}], "]"}], RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"x", "[", "\[Mu]", "]"}]], RowBox[{"g", "[", RowBox[{"[", RowBox[{"\[Nu]", ",", "\[Tau]"}], "]"}], "]"}]}], "+", RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"x", "[", "\[Nu]", "]"}]], RowBox[{"g", "[", RowBox[{"[", RowBox[{"\[Mu]", ",", "\[Tau]"}], "]"}], "]"}]}], "-", RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"x", "[", "\[Tau]", "]"}]], RowBox[{"g", "[", RowBox[{"[", RowBox[{"\[Mu]", ",", "\[Nu]"}], "]"}], "]"}]}]}], ")"}]}], ")"}]}]}], "+", RowBox[{ FractionBox["1", "2"], RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"\[Tau]", "=", "1"}], "dim"], RowBox[{"(", RowBox[{ RowBox[{"ig", "[", RowBox[{"[", RowBox[{"\[Lambda]", ",", "\[Tau]"}], "]"}], "]"}], RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"x", "[", "\[Mu]", "]"}]], RowBox[{"\[Delta]g", "[", RowBox[{"[", RowBox[{"\[Nu]", ",", "\[Tau]"}], "]"}], "]"}]}], "+", RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"x", "[", "\[Nu]", "]"}]], RowBox[{"\[Delta]g", "[", RowBox[{"[", RowBox[{"\[Mu]", ",", "\[Tau]"}], "]"}], "]"}]}], "-", RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"x", "[", "\[Tau]", "]"}]], RowBox[{"\[Delta]g", "[", RowBox[{"[", RowBox[{"\[Mu]", ",", "\[Nu]"}], "]"}], "]"}]}]}], ")"}]}], ")"}]}]}]}], "]"}]}], "\[IndentingNewLine]", "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"\[Delta]2\[CapitalGamma]", StyleBox["[", FontColor->RGBColor[1, 0, 1]], StyleBox[ RowBox[{"\[Lambda]_", ",", "\[Mu]_", ",", "\[Nu]_"}], FontColor->RGBColor[1, 0, 1]], StyleBox["]", FontColor->RGBColor[1, 0, 1]]}], ":=", "\[IndentingNewLine]", RowBox[{"Block", "[", RowBox[{ RowBox[{"{", "\[Tau]", "}"}], ",", "\[IndentingNewLine]", RowBox[{"Return", "[", RowBox[{ RowBox[{ FractionBox["1", "2"], RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"\[Tau]", "=", "1"}], "dim"], RowBox[{"(", RowBox[{ RowBox[{"\[Delta]2ig", "[", RowBox[{"\[Lambda]", ",", "\[Tau]"}], "]"}], RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"x", "[", "\[Mu]", "]"}]], RowBox[{"g", "[", RowBox[{"[", RowBox[{"\[Nu]", ",", "\[Tau]"}], "]"}], "]"}]}], "+", RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"x", "[", "\[Nu]", "]"}]], RowBox[{"g", "[", RowBox[{"[", RowBox[{"\[Mu]", ",", "\[Tau]"}], "]"}], "]"}]}], "-", RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"x", "[", "\[Tau]", "]"}]], RowBox[{"g", "[", RowBox[{"[", RowBox[{"\[Mu]", ",", "\[Nu]"}], "]"}], "]"}]}]}], ")"}]}], ")"}]}]}], "+", RowBox[{ FractionBox["1", "2"], RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"\[Tau]", "=", "1"}], "dim"], RowBox[{"(", RowBox[{ RowBox[{"\[Delta]1ig", "[", RowBox[{"\[Lambda]", ",", "\[Tau]"}], "]"}], RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"x", "[", "\[Mu]", "]"}]], RowBox[{"\[Delta]g", "[", RowBox[{"[", RowBox[{"\[Nu]", ",", "\[Tau]"}], "]"}], "]"}]}], "+", RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"x", "[", "\[Nu]", "]"}]], RowBox[{"\[Delta]g", "[", RowBox[{"[", RowBox[{"\[Mu]", ",", "\[Tau]"}], "]"}], "]"}]}], "-", RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"x", "[", "\[Tau]", "]"}]], RowBox[{"\[Delta]g", "[", RowBox[{"[", RowBox[{"\[Mu]", ",", "\[Nu]"}], "]"}], "]"}]}]}], ")"}]}], ")"}]}]}]}], "]"}]}], "\[IndentingNewLine]", "]"}]}], "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"(*", RowBox[{ RowBox[{ "The", " ", "perturbations", " ", "of", " ", "Ricci", " ", "tensor", " ", SubscriptBox["\[Delta]R", "\[Mu]\[Nu]"]}], "=", RowBox[{ RowBox[{ RowBox[{ SubscriptBox["\[PartialD]", "\[Rho]"], SuperscriptBox[ SubscriptBox["\[CapitalGamma]", "\[Mu]\[Nu]"], "\[Rho]"]}], "+"}], "..."}]}], "*)"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"\[Delta]1R", "[", RowBox[{"\[Mu]_", ",", "\[Nu]_"}], "]"}], ":=", "\[IndentingNewLine]", RowBox[{"Block", "[", RowBox[{ RowBox[{"{", RowBox[{"\[Lambda]", ",", "\[Rho]"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"Return", "[", RowBox[{ RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"\[Rho]", "=", "1"}], "dim"], RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"x", "[", "\[Rho]", "]"}]], RowBox[{"\[Delta]1\[CapitalGamma]", StyleBox["[", FontColor->RGBColor[1, 0, 1]], StyleBox[ RowBox[{"\[Rho]", ",", "\[Mu]", ",", "\[Nu]"}], FontColor->RGBColor[1, 0, 1]], StyleBox["]", FontColor->RGBColor[1, 0, 1]]}]}], "-", RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"x", "[", "\[Nu]", "]"}]], RowBox[{"\[Delta]1\[CapitalGamma]", StyleBox["[", FontColor->RGBColor[1, 0, 1]], StyleBox[ RowBox[{"\[Rho]", ",", "\[Rho]", ",", "\[Mu]"}], FontColor->RGBColor[1, 0, 1]], StyleBox["]", FontColor->RGBColor[1, 0, 1]]}]}]}], StyleBox[")", FontColor->RGBColor[1, 0, 1]]}]}], "+", RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"\[Rho]", "=", "1"}], "dim"], RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"\[Lambda]", "=", "1"}], "dim"], RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"\[Delta]1\[CapitalGamma]", StyleBox["[", FontColor->RGBColor[1, 0, 1]], StyleBox[ RowBox[{"\[Rho]", ",", "\[Rho]", ",", "\[Lambda]"}], FontColor->RGBColor[1, 0, 1]], StyleBox["]", FontColor->RGBColor[1, 0, 1]]}], StyleBox[ RowBox[{"\[CapitalGamma]", "[", RowBox[{"\[Lambda]", ",", "\[Mu]", ",", "\[Nu]"}], "]"}], FontColor->RGBColor[1, 0, 1]]}], StyleBox["+", FontColor->RGBColor[1, 0, 1]], RowBox[{ RowBox[{"\[CapitalGamma]", StyleBox["[", FontColor->RGBColor[1, 0, 1]], StyleBox[ RowBox[{"\[Rho]", ",", "\[Rho]", ",", "\[Lambda]"}], FontColor->RGBColor[1, 0, 1]], StyleBox["]", FontColor->RGBColor[1, 0, 1]]}], StyleBox[ RowBox[{"\[Delta]1\[CapitalGamma]", "[", RowBox[{"\[Lambda]", ",", "\[Mu]", ",", "\[Nu]"}], "]"}], FontColor->RGBColor[1, 0, 1]]}], StyleBox["-", FontColor->RGBColor[1, 0, 1]], RowBox[{ RowBox[{"\[Delta]1\[CapitalGamma]", StyleBox["[", FontColor->RGBColor[1, 0, 1]], StyleBox[ RowBox[{"\[Rho]", ",", "\[Nu]", ",", "\[Lambda]"}], FontColor->RGBColor[1, 0, 1]], StyleBox["]", FontColor->RGBColor[1, 0, 1]]}], StyleBox[ RowBox[{"\[CapitalGamma]", "[", RowBox[{"\[Lambda]", ",", "\[Rho]", ",", "\[Mu]"}], "]"}], FontColor->RGBColor[1, 0, 1]]}], StyleBox["-", FontColor->RGBColor[1, 0, 1]], RowBox[{ RowBox[{"\[CapitalGamma]", StyleBox["[", FontColor->RGBColor[1, 0, 1]], StyleBox[ RowBox[{"\[Rho]", ",", "\[Nu]", ",", "\[Lambda]"}], FontColor->RGBColor[1, 0, 1]], StyleBox["]", FontColor->RGBColor[1, 0, 1]]}], StyleBox[ RowBox[{"\[Delta]1\[CapitalGamma]", "[", RowBox[{"\[Lambda]", ",", "\[Rho]", ",", "\[Mu]"}], "]"}], FontColor->RGBColor[1, 0, 1]]}]}], ")"}]}]}]}], "]"}]}], "\[IndentingNewLine]", "]"}]}], "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{ RowBox[{"\[Delta]2R", "[", RowBox[{"\[Mu]_", ",", "\[Nu]_"}], "]"}], ":=", "\[IndentingNewLine]", RowBox[{"Block", "[", RowBox[{ RowBox[{"{", RowBox[{"\[Lambda]", ",", "\[Rho]"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"Return", "[", RowBox[{ RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"\[Rho]", "=", "1"}], "dim"], RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"x", "[", "\[Rho]", "]"}]], RowBox[{"\[Delta]2\[CapitalGamma]", StyleBox["[", FontColor->RGBColor[1, 0, 1]], StyleBox[ RowBox[{"\[Rho]", ",", "\[Mu]", ",", "\[Nu]"}], FontColor->RGBColor[1, 0, 1]], StyleBox["]", FontColor->RGBColor[1, 0, 1]]}]}], "-", RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"x", "[", "\[Nu]", "]"}]], RowBox[{"\[Delta]2\[CapitalGamma]", StyleBox["[", FontColor->RGBColor[1, 0, 1]], StyleBox[ RowBox[{"\[Rho]", ",", "\[Rho]", ",", "\[Mu]"}], FontColor->RGBColor[1, 0, 1]], StyleBox["]", FontColor->RGBColor[1, 0, 1]]}]}]}], StyleBox[")", FontColor->RGBColor[1, 0, 1]]}]}], "+", RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"\[Rho]", "=", "1"}], "dim"], RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"\[Lambda]", "=", "1"}], "dim"], RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"\[Delta]2\[CapitalGamma]", StyleBox["[", FontColor->RGBColor[1, 0, 1]], StyleBox[ RowBox[{"\[Rho]", ",", "\[Rho]", ",", "\[Lambda]"}], FontColor->RGBColor[1, 0, 1]], StyleBox["]", FontColor->RGBColor[1, 0, 1]]}], StyleBox[ RowBox[{"\[CapitalGamma]", "[", RowBox[{"\[Lambda]", ",", "\[Mu]", ",", "\[Nu]"}], "]"}], FontColor->RGBColor[1, 0, 1]]}], StyleBox["+", FontColor->RGBColor[1, 0, 1]], StyleBox[ RowBox[{ RowBox[{"\[Delta]1\[CapitalGamma]", "[", RowBox[{"\[Rho]", ",", "\[Rho]", ",", "\[Lambda]"}], "]"}], RowBox[{"\[Delta]1\[CapitalGamma]", "[", RowBox[{"\[Lambda]", ",", "\[Mu]", ",", "\[Nu]"}], "]"}]}], FontColor->RGBColor[1, 0, 1]], StyleBox["+", FontColor->RGBColor[1, 0, 1]], RowBox[{ RowBox[{"\[CapitalGamma]", StyleBox["[", FontColor->RGBColor[1, 0, 1]], StyleBox[ RowBox[{"\[Rho]", ",", "\[Rho]", ",", "\[Lambda]"}], FontColor->RGBColor[1, 0, 1]], StyleBox["]", FontColor->RGBColor[1, 0, 1]]}], StyleBox[ RowBox[{"\[Delta]2\[CapitalGamma]", "[", RowBox[{"\[Lambda]", ",", "\[Mu]", ",", "\[Nu]"}], "]"}], FontColor->RGBColor[1, 0, 1]]}], StyleBox["-", FontColor->RGBColor[1, 0, 1]], RowBox[{ RowBox[{"\[Delta]2\[CapitalGamma]", StyleBox["[", FontColor->RGBColor[1, 0, 1]], StyleBox[ RowBox[{"\[Rho]", ",", "\[Nu]", ",", "\[Lambda]"}], FontColor->RGBColor[1, 0, 1]], StyleBox["]", FontColor->RGBColor[1, 0, 1]]}], StyleBox[ RowBox[{"\[CapitalGamma]", "[", RowBox[{"\[Lambda]", ",", "\[Rho]", ",", "\[Mu]"}], "]"}], FontColor->RGBColor[1, 0, 1]]}], StyleBox["-", FontColor->RGBColor[1, 0, 1]], RowBox[{ RowBox[{"\[Delta]1\[CapitalGamma]", StyleBox["[", FontColor->RGBColor[1, 0, 1]], StyleBox[ RowBox[{"\[Rho]", ",", "\[Nu]", ",", "\[Lambda]"}], FontColor->RGBColor[1, 0, 1]], StyleBox["]", FontColor->RGBColor[1, 0, 1]]}], StyleBox[ RowBox[{"\[Delta]1\[CapitalGamma]", "[", RowBox[{"\[Lambda]", ",", "\[Rho]", ",", "\[Mu]"}], "]"}], FontColor->RGBColor[1, 0, 1]]}], StyleBox["-", FontColor->RGBColor[1, 0, 1]], RowBox[{ RowBox[{"\[CapitalGamma]", StyleBox["[", FontColor->RGBColor[1, 0, 1]], StyleBox[ RowBox[{"\[Rho]", ",", "\[Nu]", ",", "\[Lambda]"}], FontColor->RGBColor[1, 0, 1]], StyleBox["]", FontColor->RGBColor[1, 0, 1]]}], StyleBox[ RowBox[{"\[Delta]2\[CapitalGamma]", "[", RowBox[{"\[Lambda]", ",", "\[Rho]", ",", "\[Mu]"}], "]"}], FontColor->RGBColor[1, 0, 1]]}]}], ")"}]}]}]}], "]"}]}], "\[IndentingNewLine]", "]"}]}], "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"(*", RowBox[{ "The", " ", "perturbations", " ", "of", " ", "scalar", " ", "curvature", " ", "R"}], "*)"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"\[Delta]1R", "[", "]"}], ":=", "\[IndentingNewLine]", RowBox[{"Block", "[", RowBox[{ RowBox[{"{", StyleBox[ RowBox[{"\[Mu]", ",", "\[Nu]"}], FontColor->RGBColor[1, 0, 1]], "}"}], ",", "\[IndentingNewLine]", RowBox[{"Return", "[", RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"\[Mu]", "=", "1"}], "dim"], RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"\[Nu]", "=", "1"}], "dim"], RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"\[Delta]1ig", StyleBox["[", FontColor->RGBColor[1, 0, 1]], StyleBox[ RowBox[{"\[Mu]", ",", "\[Nu]"}], FontColor->RGBColor[1, 0, 1]], StyleBox["]", FontColor->RGBColor[1, 0, 1]]}], StyleBox[ RowBox[{"R", "[", RowBox[{"\[Mu]", ",", "\[Nu]"}], "]"}], FontColor->RGBColor[1, 0, 1]]}], "+", RowBox[{ RowBox[{"ig", StyleBox["[", FontColor->RGBColor[1, 0, 1]], StyleBox[ RowBox[{"[", RowBox[{"\[Mu]", ",", "\[Nu]"}], "]"}], FontColor->RGBColor[1, 0, 1]], StyleBox["]", FontColor->RGBColor[1, 0, 1]]}], StyleBox[ RowBox[{"\[Delta]1R", "[", RowBox[{"\[Mu]", ",", "\[Nu]"}], "]"}], FontColor->RGBColor[1, 0, 1]]}]}], ")"}]}]}], "]"}]}], "\[IndentingNewLine]", "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"\[Delta]2R", "[", "]"}], ":=", "\[IndentingNewLine]", RowBox[{"Block", "[", RowBox[{ RowBox[{"{", StyleBox[ RowBox[{"\[Mu]", ",", "\[Nu]"}], FontColor->RGBColor[1, 0, 1]], "}"}], ",", "\[IndentingNewLine]", RowBox[{"Return", "[", RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"\[Mu]", "=", "1"}], "dim"], RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"\[Nu]", "=", "1"}], "dim"], RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"\[Delta]2ig", StyleBox["[", FontColor->RGBColor[1, 0, 1]], StyleBox[ RowBox[{"\[Mu]", ",", "\[Nu]"}], FontColor->RGBColor[1, 0, 1]], StyleBox["]", FontColor->RGBColor[1, 0, 1]]}], StyleBox[ RowBox[{"R", "[", RowBox[{"\[Mu]", ",", "\[Nu]"}], "]"}], FontColor->RGBColor[1, 0, 1]]}], StyleBox["+", FontColor->RGBColor[1, 0, 1]], RowBox[{ RowBox[{"\[Delta]1ig", StyleBox["[", FontColor->RGBColor[1, 0, 1]], StyleBox[ RowBox[{"\[Mu]", ",", "\[Nu]"}], FontColor->RGBColor[1, 0, 1]], StyleBox["]", FontColor->RGBColor[1, 0, 1]]}], StyleBox[ RowBox[{"\[Delta]1R", "[", RowBox[{"\[Mu]", ",", "\[Nu]"}], "]"}], FontColor->RGBColor[1, 0, 1]]}], "+", RowBox[{ RowBox[{"ig", StyleBox["[", FontColor->RGBColor[1, 0, 1]], StyleBox[ RowBox[{"[", RowBox[{"\[Mu]", ",", "\[Nu]"}], "]"}], FontColor->RGBColor[1, 0, 1]], StyleBox["]", FontColor->RGBColor[1, 0, 1]]}], StyleBox[ RowBox[{"\[Delta]2R", "[", RowBox[{"\[Mu]", ",", "\[Nu]"}], "]"}], FontColor->RGBColor[1, 0, 1]]}]}], ")"}]}]}], "]"}]}], "\[IndentingNewLine]", "]"}]}], "\[IndentingNewLine]", RowBox[{"(*", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{"--", RowBox[{ "--", "--"}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]\ }]}]}]}]}]}], "*)"}], "\[IndentingNewLine]", RowBox[{"(*", RowBox[{ RowBox[{"The", " ", "perturbations", " ", "of", " ", SqrtBox[ RowBox[{"-", "g"}]]}], ":=", "sqtg"}], "*)"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"\[Delta]1sqtg", "[", "]"}], ":=", RowBox[{"Block", "[", RowBox[{ RowBox[{"{", RowBox[{"\[Lambda]", ",", "\[Sigma]"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"Return", "[", RowBox[{ FractionBox["1", "2"], SuperscriptBox[ RowBox[{"a", "[", "r", "]"}], "2"], RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"\[Lambda]", "=", "1"}], "dim"], RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"\[Sigma]", "=", "1"}], "dim"], RowBox[{"(", RowBox[{ RowBox[{"ig", "[", RowBox[{"[", RowBox[{"\[Lambda]", ",", "\[Sigma]"}], "]"}], "]"}], RowBox[{"\[Delta]g", "[", RowBox[{"[", RowBox[{"\[Lambda]", ",", "\[Sigma]"}], "]"}], "]"}]}], ")"}]}]}]}], "]"}]}], "\[IndentingNewLine]", "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"\[Delta]2sqtg", "[", "]"}], ":=", RowBox[{"Block", "[", RowBox[{ RowBox[{"{", RowBox[{"\[Lambda]", ",", "\[Sigma]"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"Return", "[", RowBox[{ FractionBox["1", "8"], SuperscriptBox[ RowBox[{"a", "[", "r", "]"}], "2"], RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"\[Lambda]", "=", "1"}], "dim"], RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"\[Sigma]", "=", "1"}], "dim"], RowBox[{"(", RowBox[{ RowBox[{"ig", "[", RowBox[{"[", RowBox[{"\[Lambda]", ",", "\[Sigma]"}], "]"}], "]"}], RowBox[{"\[Delta]g", "[", RowBox[{"[", RowBox[{"\[Lambda]", ",", "\[Sigma]"}], "]"}], "]"}]}], ")"}]}]}], ")"}], "2"], "+", RowBox[{"2", RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"\[Lambda]", "=", "1"}], "dim"], RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"\[Sigma]", "=", "1"}], "dim"], RowBox[{"(", RowBox[{ RowBox[{"\[Delta]g", "[", RowBox[{"[", RowBox[{"\[Lambda]", ",", "\[Sigma]"}], "]"}], "]"}], RowBox[{"\[Delta]1ig", "[", RowBox[{"\[Lambda]", ",", "\[Sigma]"}], "]"}]}], ")"}]}]}]}]}], ")"}]}], "]"}]}], "\[IndentingNewLine]", "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"\[ScriptCapitalX]", "[", "]"}], ":=", RowBox[{"Block", "[", RowBox[{ RowBox[{"{", StyleBox[ RowBox[{"\[Mu]", ",", "\[Nu]"}], FontColor->RGBColor[1, 0, 1]], "}"}], ",", "\[IndentingNewLine]", RowBox[{"Return", "[", RowBox[{ FractionBox[ RowBox[{"-", "1"}], "2"], RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"\[Mu]", "=", "1"}], "dim"], RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"\[Nu]", "=", "1"}], "dim"], RowBox[{"(", RowBox[{ RowBox[{"ig", StyleBox["[", FontColor->RGBColor[1, 0, 1]], StyleBox[ RowBox[{"[", RowBox[{"\[Mu]", ",", "\[Nu]"}], "]"}], FontColor->RGBColor[1, 0, 1]], StyleBox["]", FontColor->RGBColor[1, 0, 1]]}], StyleBox[ RowBox[{"(", RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"x", "[", "\[Mu]", "]"}]], RowBox[{"\[CurlyPhi]", "[", "r", "]"}]}], ")"}], FontColor->RGBColor[1, 0, 1]], StyleBox[ RowBox[{"(", RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"x", "[", "\[Nu]", "]"}]], RowBox[{"\[CurlyPhi]", "[", "r", "]"}]}], ")"}], FontColor->RGBColor[1, 0, 1]]}], ")"}]}]}]}], "]"}]}], "\[IndentingNewLine]", "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"\[Delta]1\[ScriptCapitalX]", "[", "]"}], ":=", RowBox[{"Block", "[", RowBox[{ RowBox[{"{", RowBox[{"\[Mu]", ",", "\[Nu]"}], "}"}], ",", RowBox[{"Return", "[", RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"\[Mu]", "=", "1"}], "dim"], RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"\[Nu]", "=", "1"}], "dim"], RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], RowBox[{"\[Delta]1ig", "[", RowBox[{"\[Mu]", ",", "\[Nu]"}], "]"}], RowBox[{"(", RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"x", "[", "\[Mu]", "]"}]], RowBox[{"\[CurlyPhi]", "[", "r", "]"}]}], ")"}], RowBox[{"(", RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"x", "[", "\[Nu]", "]"}]], RowBox[{"\[CurlyPhi]", "[", "r", "]"}]}], ")"}]}], "-", RowBox[{ RowBox[{"ig", "[", RowBox[{"[", RowBox[{"\[Mu]", ",", "\[Nu]"}], "]"}], "]"}], RowBox[{"(", RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"x", "[", "\[Mu]", "]"}]], RowBox[{"\[CurlyPhi]", "[", "r", "]"}]}], ")"}], RowBox[{"(", RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"x", "[", "\[Nu]", "]"}]], RowBox[{"\[Delta]\[CurlyPhi]", "[", RowBox[{"t", ",", "r"}], "]"}]}], ")"}]}]}], ")"}]}]}], "]"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"\[Delta]2\[ScriptCapitalX]", "[", "]"}], ":=", RowBox[{"Block", "[", RowBox[{ RowBox[{"{", RowBox[{"\[Mu]", ",", "\[Nu]"}], "}"}], ",", RowBox[{"Return", "[", RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"\[Mu]", "=", "1"}], "dim"], RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"\[Nu]", "=", "1"}], "dim"], RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], RowBox[{"\[Delta]2ig", "[", RowBox[{"\[Mu]", ",", "\[Nu]"}], "]"}], RowBox[{"(", RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"x", "[", "\[Mu]", "]"}]], RowBox[{"\[CurlyPhi]", "[", "r", "]"}]}], ")"}], RowBox[{"(", RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"x", "[", "\[Nu]", "]"}]], RowBox[{"\[CurlyPhi]", "[", "r", "]"}]}], ")"}]}], "-", RowBox[{ RowBox[{"\[Delta]1ig", "[", RowBox[{"\[Mu]", ",", "\[Nu]"}], "]"}], RowBox[{"(", RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"x", "[", "\[Mu]", "]"}]], RowBox[{"\[CurlyPhi]", "[", "r", "]"}]}], ")"}], RowBox[{"(", RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"x", "[", "\[Nu]", "]"}]], RowBox[{"\[Delta]\[CurlyPhi]", "[", RowBox[{"t", ",", "r"}], "]"}]}], ")"}]}], "-", RowBox[{ FractionBox["1", "2"], RowBox[{"ig", "[", RowBox[{"[", RowBox[{"\[Mu]", ",", "\[Nu]"}], "]"}], "]"}], RowBox[{"(", RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"x", "[", "\[Mu]", "]"}]], RowBox[{"\[Delta]\[CurlyPhi]", "[", RowBox[{"t", ",", "r"}], "]"}]}], ")"}], RowBox[{"(", RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"x", "[", "\[Nu]", "]"}]], RowBox[{"\[Delta]\[CurlyPhi]", "[", RowBox[{"t", ",", "r"}], "]"}]}], ")"}]}]}], ")"}]}]}], "]"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"X", "[", "]"}], ":=", RowBox[{"Block", "[", RowBox[{ RowBox[{"{", StyleBox[ RowBox[{"\[Mu]", ",", "\[Nu]"}], FontColor->RGBColor[1, 0, 1]], "}"}], ",", "\[IndentingNewLine]", RowBox[{"Return", "[", RowBox[{ FractionBox[ RowBox[{"-", "1"}], "2"], RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"\[Mu]", "=", "1"}], "dim"], RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"\[Nu]", "=", "1"}], "dim"], RowBox[{"(", RowBox[{ RowBox[{"ig", StyleBox["[", FontColor->RGBColor[1, 0, 1]], StyleBox[ RowBox[{"[", RowBox[{"\[Mu]", ",", "\[Nu]"}], "]"}], FontColor->RGBColor[1, 0, 1]], StyleBox["]", FontColor->RGBColor[1, 0, 1]]}], StyleBox[ RowBox[{"(", RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"x", "[", "\[Mu]", "]"}]], RowBox[{"\[Phi]", "[", "r", "]"}]}], ")"}], FontColor->RGBColor[1, 0, 1]], StyleBox[ RowBox[{"(", RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"x", "[", "\[Nu]", "]"}]], RowBox[{"\[Phi]", "[", "r", "]"}]}], ")"}], FontColor->RGBColor[1, 0, 1]]}], ")"}]}]}]}], "]"}]}], "\[IndentingNewLine]", "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"\[Delta]1X", "[", "]"}], ":=", RowBox[{"Block", "[", RowBox[{ RowBox[{"{", RowBox[{"\[Mu]", ",", "\[Nu]"}], "}"}], ",", RowBox[{"Return", "[", RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"\[Mu]", "=", "1"}], "dim"], RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"\[Nu]", "=", "1"}], "dim"], RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], RowBox[{"\[Delta]1ig", "[", RowBox[{"\[Mu]", ",", "\[Nu]"}], "]"}], RowBox[{"(", RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"x", "[", "\[Mu]", "]"}]], RowBox[{"\[Phi]", "[", "r", "]"}]}], ")"}], RowBox[{"(", RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"x", "[", "\[Nu]", "]"}]], RowBox[{"\[Phi]", "[", "r", "]"}]}], ")"}]}], "-", RowBox[{ RowBox[{"ig", "[", RowBox[{"[", RowBox[{"\[Mu]", ",", "\[Nu]"}], "]"}], "]"}], RowBox[{"(", RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"x", "[", "\[Mu]", "]"}]], RowBox[{"\[Phi]", "[", "r", "]"}]}], ")"}], RowBox[{"(", RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"x", "[", "\[Nu]", "]"}]], RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}]}], ")"}]}]}], ")"}]}]}], "]"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"(*", RowBox[{ "Second", " ", "order", " ", "perturbation", " ", "of", " ", "the", " ", "kinetic", " ", "term", " ", "of", " ", "\[Phi]"}], "*)"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"\[Delta]2X", "[", "]"}], ":=", RowBox[{"Block", "[", RowBox[{ RowBox[{"{", RowBox[{"\[Mu]", ",", "\[Nu]"}], "}"}], ",", RowBox[{"Return", "[", RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"\[Mu]", "=", "1"}], "dim"], RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"\[Nu]", "=", "1"}], "dim"], RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], RowBox[{"\[Delta]2ig", "[", RowBox[{"\[Mu]", ",", "\[Nu]"}], "]"}], RowBox[{"(", RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"x", "[", "\[Mu]", "]"}]], RowBox[{"\[Phi]", "[", "r", "]"}]}], ")"}], RowBox[{"(", RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"x", "[", "\[Nu]", "]"}]], RowBox[{"\[Phi]", "[", "r", "]"}]}], ")"}]}], "-", RowBox[{ RowBox[{"\[Delta]1ig", "[", RowBox[{"\[Mu]", ",", "\[Nu]"}], "]"}], RowBox[{"(", RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"x", "[", "\[Mu]", "]"}]], RowBox[{"\[Phi]", "[", "r", "]"}]}], ")"}], RowBox[{"(", RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"x", "[", "\[Nu]", "]"}]], RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}]}], ")"}]}], "-", RowBox[{ FractionBox["1", "2"], RowBox[{"ig", "[", RowBox[{"[", RowBox[{"\[Mu]", ",", "\[Nu]"}], "]"}], "]"}], RowBox[{"(", RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"x", "[", "\[Mu]", "]"}]], RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}]}], ")"}], RowBox[{"(", RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"x", "[", "\[Nu]", "]"}]], RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}]}], ")"}]}]}], ")"}]}]}], "]"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"\[Delta]1L", "[", "]"}], ":=", RowBox[{"Block", "[", RowBox[{ RowBox[{"{", "}"}], ",", RowBox[{"Return", "[", RowBox[{ RowBox[{ RowBox[{"L\[Phi]", "[", "r", "]"}], RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}]}], "+", RowBox[{ RowBox[{"LX", "[", "r", "]"}], RowBox[{"\[Delta]1X", "[", "]"}]}]}], "]"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"\[Delta]2L", "[", "]"}], ":=", RowBox[{"Block", "[", RowBox[{ RowBox[{"{", "}"}], ",", RowBox[{"Return", "[", RowBox[{ RowBox[{ RowBox[{"LX\[Phi]", "[", "r", "]"}], RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], RowBox[{"\[Delta]1X", "[", "]"}]}], "+", RowBox[{ FractionBox["1", "2"], RowBox[{"L\[Phi]\[Phi]", "[", "r", "]"}], SuperscriptBox[ RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], "2"]}], "+", RowBox[{ FractionBox["1", "2"], RowBox[{"LXX", "[", "r", "]"}], SuperscriptBox[ RowBox[{"\[Delta]1X", "[", "]"}], "2"]}], "+", RowBox[{ RowBox[{"LX", "[", "r", "]"}], RowBox[{"\[Delta]2X", "[", "]"}]}]}], "]"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"\[Delta]1Ltot", "[", "]"}], ":=", RowBox[{"Block", "[", RowBox[{ RowBox[{"{", "}"}], ",", RowBox[{"Return", "[", RowBox[{ RowBox[{ RowBox[{"\[Delta]1sqtg", "[", "]"}], RowBox[{"(", RowBox[{ RowBox[{"\[ScriptCapitalX]", "[", "]"}], "+", RowBox[{ RowBox[{"\[CurlyPhi]", "[", "r", "]"}], RowBox[{"R", "[", "]"}]}], "+", RowBox[{"\[Kappa]", " ", RowBox[{"L", "[", "r", "]"}]}]}], ")"}]}], "+", RowBox[{ SuperscriptBox[ RowBox[{"a", "[", "r", "]"}], "2"], RowBox[{"(", RowBox[{ RowBox[{"\[Delta]1\[ScriptCapitalX]", "[", "]"}], "+", RowBox[{ RowBox[{"\[Delta]\[CurlyPhi]", "[", RowBox[{"t", ",", "r"}], "]"}], RowBox[{"R", "[", "]"}]}], "+", RowBox[{ RowBox[{"\[CurlyPhi]", "[", "r", "]"}], RowBox[{"\[Delta]1R", "[", "]"}]}], "+", RowBox[{"\[Kappa]", " ", RowBox[{"\[Delta]1L", "[", "]"}]}]}], ")"}]}]}], "]"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"\[Delta]2Ltot", "[", "]"}], ":=", RowBox[{"Block", "[", RowBox[{ RowBox[{"{", "}"}], ",", RowBox[{"Return", "[", RowBox[{ RowBox[{ RowBox[{"\[Delta]2sqtg", "[", "]"}], RowBox[{"(", RowBox[{ RowBox[{"\[ScriptCapitalX]", "[", "]"}], "+", RowBox[{ RowBox[{"\[CurlyPhi]", "[", "r", "]"}], RowBox[{"R", "[", "]"}]}], "+", RowBox[{"\[Kappa]", " ", RowBox[{"L", "[", "r", "]"}]}]}], ")"}]}], "+", RowBox[{ RowBox[{"\[Delta]1sqtg", "[", "]"}], RowBox[{"(", RowBox[{ RowBox[{"\[Delta]1\[ScriptCapitalX]", "[", "]"}], "+", RowBox[{ RowBox[{"\[Delta]\[CurlyPhi]", "[", RowBox[{"t", ",", "r"}], "]"}], RowBox[{"R", "[", "]"}]}], "+", RowBox[{ RowBox[{"\[CurlyPhi]", "[", "r", "]"}], RowBox[{"\[Delta]1R", "[", "]"}]}], "+", RowBox[{"\[Kappa]", " ", RowBox[{"\[Delta]1L", "[", "]"}]}]}], ")"}]}], "+", RowBox[{ SuperscriptBox[ RowBox[{"a", "[", "r", "]"}], "2"], RowBox[{"(", RowBox[{ RowBox[{"\[Delta]2\[ScriptCapitalX]", "[", "]"}], "+", RowBox[{ RowBox[{"\[Delta]\[CurlyPhi]", "[", RowBox[{"t", ",", "r"}], "]"}], RowBox[{"\[Delta]1R", "[", "]"}]}], "+", RowBox[{ RowBox[{"\[CurlyPhi]", "[", "r", "]"}], RowBox[{"\[Delta]2R", "[", "]"}]}], "+", RowBox[{"\[Kappa]", " ", RowBox[{"\[Delta]2L", "[", "]"}]}]}], ")"}]}]}], "]"}]}], "]"}]}], ";"}]}]}]], "Input", CellFrame->True, CellChangeTimes->{{3.759057094403038*^9, 3.759057137333125*^9}, { 3.759057211743802*^9, 3.759057381290679*^9}, {3.759057545395453*^9, 3.759057564057556*^9}, {3.759057601138125*^9, 3.75905762825916*^9}, { 3.789678107418088*^9, 3.7896781116641903`*^9}, {3.789678182026375*^9, 3.7896781860374527`*^9}, {3.789678395164371*^9, 3.7896783984390917`*^9}, { 3.789678454952181*^9, 3.789678484326003*^9}, 3.789678527719822*^9, { 3.7896785627445793`*^9, 3.7896785724318027`*^9}, {3.789678614421101*^9, 3.7896786646960793`*^9}, {3.78967878695472*^9, 3.7896788130385103`*^9}, { 3.789678910705612*^9, 3.789678916272171*^9}, {3.789678988817287*^9, 3.789679025438501*^9}, {3.7896792617917557`*^9, 3.789679283626535*^9}, { 3.7896816138218117`*^9, 3.789681712441774*^9}, {3.7896823013273077`*^9, 3.789682372337599*^9}, {3.789684224787877*^9, 3.789684235184816*^9}, { 3.789684265948676*^9, 3.7896843306415663`*^9}, {3.7896857408862333`*^9, 3.789686091390204*^9}, {3.789686149586475*^9, 3.789686167064357*^9}, { 3.789686226809259*^9, 3.7896863771921587`*^9}, {3.789686691523095*^9, 3.789686695856412*^9}, {3.7896871433029413`*^9, 3.789687228310981*^9}, { 3.789687278970127*^9, 3.789687339012309*^9}, {3.789700468849859*^9, 3.789700522493737*^9}, {3.7897015323038273`*^9, 3.789701584015915*^9}, { 3.7897027469354067`*^9, 3.789702747778913*^9}, {3.7897027866474447`*^9, 3.7897028166964903`*^9}, {3.789702873835091*^9, 3.789702885973221*^9}, { 3.789702990498192*^9, 3.7897030322794523`*^9}, {3.789703098148395*^9, 3.7897031677744083`*^9}, {3.7897032193687153`*^9, 3.789703365954938*^9}, { 3.789703429573255*^9, 3.7897035153264093`*^9}, {3.789703591649728*^9, 3.7897036125509233`*^9}, {3.789704591188981*^9, 3.789704594888507*^9}, { 3.789704631968274*^9, 3.789704659529758*^9}, {3.8073302460826592`*^9, 3.8073303471596065`*^9}, {3.807330396323227*^9, 3.807330419354128*^9}, { 3.8073304754482927`*^9, 3.807330508190378*^9}, {3.8096042518310013`*^9, 3.8096042524075103`*^9}, {3.8096043004340134`*^9, 3.809604312691864*^9}, { 3.8096044676953473`*^9, 3.8096045470724945`*^9}, {3.809604578170788*^9, 3.8096045989396563`*^9}, {3.809604837220583*^9, 3.80960488468725*^9}, { 3.809604925904604*^9, 3.8096049519839745`*^9}, {3.809605033356516*^9, 3.809605264898634*^9}, {3.8096052992479124`*^9, 3.809605345219165*^9}, { 3.8096054111650844`*^9, 3.8096054333317666`*^9}, 3.809605529124302*^9, { 3.809605572548521*^9, 3.809605626284264*^9}, 3.8096434998726964`*^9, { 3.809644001711256*^9, 3.8096440382067895`*^9}, 3.809644069006364*^9, { 3.8096442183225727`*^9, 3.8096444724856205`*^9}, {3.8096445282646227`*^9, 3.8096445639842806`*^9}, {3.8096445976652784`*^9, 3.809644810856555*^9}, { 3.8096449823926325`*^9, 3.809645024410598*^9}, {3.8096452846321383`*^9, 3.8096453925728254`*^9}, {3.8096454345786824`*^9, 3.8096457547506776`*^9}, {3.8096459411210823`*^9, 3.8096460431088896`*^9}, {3.809646083319609*^9, 3.809646108103424*^9}, { 3.809646170224351*^9, 3.8096462959264245`*^9}, {3.80964768252927*^9, 3.809647768098908*^9}, {3.809648083426586*^9, 3.8096483601290355`*^9}, { 3.8096484051777124`*^9, 3.809648405562004*^9}, {3.809648824045597*^9, 3.8096488799093046`*^9}, {3.809649904157894*^9, 3.8096502695317*^9}, 3.809653199181205*^9, {3.8096533339166985`*^9, 3.809653353182002*^9}, { 3.809680406945159*^9, 3.809680410016223*^9}, 3.8096865258028307`*^9, { 3.809687143978774*^9, 3.8096872323069344`*^9}, {3.8096872847030544`*^9, 3.809687382721032*^9}, {3.809687456971861*^9, 3.809687658434162*^9}, { 3.809687689060437*^9, 3.809687716279277*^9}, {3.809687765728553*^9, 3.8096882634785223`*^9}, {3.809688323480094*^9, 3.809688326347675*^9}, { 3.809688437811371*^9, 3.8096884560617695`*^9}, {3.809688670740788*^9, 3.8096886709108152`*^9}, {3.8096889141691265`*^9, 3.8096889443351817`*^9}, {3.809688993696886*^9, 3.80968910270956*^9}, { 3.809689164818078*^9, 3.8096891855449305`*^9}, {3.809693262414693*^9, 3.809693268761449*^9}, {3.80972596327617*^9, 3.8097260979577513`*^9}, { 3.809726159013673*^9, 3.809726234578017*^9}, {3.809727796466253*^9, 3.809727798549282*^9}, {3.809727834797138*^9, 3.8097279536715136`*^9}, 3.80972804283212*^9, {3.809728099382267*^9, 3.8097281942602253`*^9}, { 3.8097284908300724`*^9, 3.8097284921286397`*^9}, {3.8097286317731757`*^9, 3.809728634258175*^9}, {3.809728775670286*^9, 3.809728838670857*^9}, { 3.80972888998236*^9, 3.80972889720559*^9}, {3.8097290448836904`*^9, 3.8097290832025027`*^9}, {3.8097291150460777`*^9, 3.809729130371138*^9}, { 3.809729185811878*^9, 3.809729324843415*^9}, {3.8097293717718124`*^9, 3.809729496258957*^9}, {3.8097295289802322`*^9, 3.8097295649038553`*^9}, { 3.8097296287528343`*^9, 3.8097297277731457`*^9}, {3.8097297595292645`*^9, 3.809729761167873*^9}, {3.8097298063503513`*^9, 3.809729806991351*^9}, { 3.8097299602550726`*^9, 3.809729961283953*^9}, {3.8097301289277277`*^9, 3.809730189202571*^9}, {3.8097302430676537`*^9, 3.809730279954827*^9}, { 3.809730328418105*^9, 3.8097303442608166`*^9}, {3.8097303806783094`*^9, 3.809730413893141*^9}, {3.8097304545768275`*^9, 3.8097304648476753`*^9}, { 3.809730518519561*^9, 3.8097305187335453`*^9}, {3.809730565188945*^9, 3.8097306058530293`*^9}, {3.8097306546616707`*^9, 3.809730749623911*^9}, { 3.8097364715023327`*^9, 3.8097364737384863`*^9}, {3.8097365255908637`*^9, 3.8097365275060205`*^9}, {3.809736590698472*^9, 3.809736609072667*^9}, { 3.809750476993899*^9, 3.809750529631473*^9}, {3.8097505937838583`*^9, 3.8097506108278265`*^9}, {3.809750854595237*^9, 3.8097508577408595`*^9}, { 3.8097714717896852`*^9, 3.809771490222725*^9}, {3.809773713422468*^9, 3.8097737358816376`*^9}, {3.8097738095755906`*^9, 3.8097738133216453`*^9}, 3.8098578748021855`*^9, {3.8098579869363203`*^9, 3.8098580553681173`*^9}, { 3.8098584915855165`*^9, 3.809858633618713*^9}, {3.80985904955875*^9, 3.809859135665118*^9}, {3.809859173859674*^9, 3.809859179743992*^9}, { 3.809859228118129*^9, 3.809859229542833*^9}, {3.8098592712670994`*^9, 3.8098593385810003`*^9}, {3.8098595489933186`*^9, 3.809859630443638*^9}, { 3.809859684527335*^9, 3.809859708830908*^9}, {3.809859762657276*^9, 3.809859785528284*^9}, {3.8098604383924255`*^9, 3.8098605552593794`*^9}, { 3.8098605935599437`*^9, 3.8098606457441816`*^9}, {3.8098606933906612`*^9, 3.8098606996271715`*^9}, {3.8098608438496485`*^9, 3.809860888039268*^9}, { 3.809860937465439*^9, 3.8098610141973524`*^9}, {3.809861058185173*^9, 3.8098610651349497`*^9}, {3.809861099446761*^9, 3.8098612137033043`*^9}, { 3.8098613148666673`*^9, 3.809861588428746*^9}, {3.809861695060152*^9, 3.8098617036314735`*^9}, {3.8098621130071297`*^9, 3.8098621234551783`*^9}, {3.8104666048272257`*^9, 3.8104666259631367`*^9}, {3.8104666648803*^9, 3.810466712969939*^9}, { 3.810468574875773*^9, 3.8104687501179028`*^9}, {3.810470957862068*^9, 3.8104709591561117`*^9}, {3.811939584834838*^9, 3.8119396011425333`*^9}, { 3.8119573277476835`*^9, 3.811957389397585*^9}, {3.8119574371637225`*^9, 3.8119574500498123`*^9}, {3.811959620506625*^9, 3.8119596357614408`*^9}, { 3.8119596725543857`*^9, 3.8119597168989563`*^9}, {3.8119597594504647`*^9, 3.8119598182057805`*^9}, {3.811966169906666*^9, 3.811966223868064*^9}, { 3.811966432117222*^9, 3.81196643314487*^9}, {3.8119970197048965`*^9, 3.8119970448267565`*^9}, {3.8119982423875055`*^9, 3.811998244777999*^9}, { 3.8120068497174587`*^9, 3.8120068825947123`*^9}, 3.8120071260819445`*^9, { 3.8120073658191123`*^9, 3.8120073690104265`*^9}, 3.812007474001466*^9, { 3.81200762798589*^9, 3.8120076643356934`*^9}, 3.8120077192679806`*^9, { 3.8120080386527834`*^9, 3.812008055187685*^9}, {3.8120085380337873`*^9, 3.812008540802331*^9}, {3.8120094296460285`*^9, 3.812009633926214*^9}, { 3.8120098440146437`*^9, 3.812009940139947*^9}, {3.812009974907216*^9, 3.812009980216878*^9}, {3.812010635309727*^9, 3.8120106387918425`*^9}, { 3.812012497553955*^9, 3.812012513450577*^9}, {3.8120129264572153`*^9, 3.8120129466003337`*^9}, 3.812013258181575*^9, {3.812013318936097*^9, 3.812013319509197*^9}, {3.8120134018304152`*^9, 3.81201359557968*^9}, { 3.812102244327936*^9, 3.812102246405163*^9}, {3.812365237382161*^9, 3.812365301934537*^9}, {3.812365354990218*^9, 3.812365364878776*^9}, 3.846018694896039*^9, 3.8460189673229227`*^9, {3.846019010314439*^9, 3.846019046601103*^9}, {3.8460204953399143`*^9, 3.8460206021368637`*^9}, { 3.8460206396886473`*^9, 3.846020798869136*^9}, {3.846020830573615*^9, 3.8460209485478992`*^9}, {3.846021119721386*^9, 3.8460211198553743`*^9}, { 3.846021358611889*^9, 3.846021379908968*^9}, {3.8460214231176147`*^9, 3.8460214433780413`*^9}, 3.846021481078971*^9, {3.846021511718336*^9, 3.8460215447237062`*^9}, {3.846021586644334*^9, 3.846021682079484*^9}, { 3.846021720483676*^9, 3.846021828370523*^9}, {3.846021874840016*^9, 3.846021898005354*^9}, {3.8460219780220222`*^9, 3.846021987006195*^9}, 3.8460220462711067`*^9, {3.846022099844296*^9, 3.84602237325627*^9}, { 3.8460227378706627`*^9, 3.8460229350809813`*^9}, {3.846053932086841*^9, 3.846053965922641*^9}, {3.846065275644821*^9, 3.846065281648182*^9}, { 3.846128009641436*^9, 3.84612801436349*^9}, {3.846235960489724*^9, 3.846235963251115*^9}, 3.846818784749259*^9, {3.8481999755087085`*^9, 3.8482000240124245`*^9}, {3.848206026471057*^9, 3.848206066465716*^9}, { 3.8482125251302013`*^9, 3.8482125303993893`*^9}, {3.848222085747283*^9, 3.848222097425733*^9}}, Background->GrayLevel[ 0.849989],ExpressionUUID->"04341ae6-822b-4813-8b7b-6783a6645511"] }, Open ]], Cell[CellGroupData[{ Cell["3. The results of \[Delta]1Ltot[ ] and \[Delta]2Ltot[ ]", "Section", CellChangeTimes->{{3.848212868881568*^9, 3.848212888248472*^9}, { 3.8482137999845467`*^9, 3.848213801611897*^9}},ExpressionUUID->"0c328a02-c72a-4f12-a3f5-\ b8001193115c"], Cell[CellGroupData[{ Cell["\<\ 3.1 The first-order perturbation of Ltot can be separated into five parts, \ from which we can read out the background field equations.\ \>", "Subsection", CellChangeTimes->{{3.848212914246252*^9, 3.8482129185547237`*^9}, { 3.848213023721325*^9, 3.848213042231996*^9}},ExpressionUUID->"ccfa7d39-6019-4f5e-a6ed-\ 9f2fdc68effa"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"\[Delta]1Ltotal", "=", RowBox[{ RowBox[{"\[Delta]1Ltot", "[", "]"}], "//", "Expand"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"\[Delta]1L\[CapitalPhi]", "=", RowBox[{ RowBox[{"\[Delta]1Ltotal", "-", RowBox[{"(", RowBox[{"\[Delta]1Ltotal", "/.", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["\[CapitalPhi]", TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", "0"}], ",", RowBox[{ RowBox[{ SuperscriptBox["\[CapitalPhi]", TagBox[ RowBox[{"(", RowBox[{"1", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", "0"}]}], "}"}]}], ")"}]}], "//", "Expand"}]}], "\[IndentingNewLine]", RowBox[{"\[Delta]1L\[Delta]\[CurlyPhi]", "=", RowBox[{ RowBox[{"\[Delta]1Ltotal", "-", RowBox[{"(", RowBox[{"\[Delta]1Ltotal", "/.", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["\[Delta]\[CurlyPhi]", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", "0"}], ",", RowBox[{ RowBox[{"\[Delta]\[CurlyPhi]", "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", "0"}]}], "}"}]}], ")"}]}], "//", "Expand"}]}], "\[IndentingNewLine]", RowBox[{"\[Delta]1L\[Delta]\[Phi]", "=", RowBox[{ RowBox[{"\[Delta]1Ltotal", "-", RowBox[{"(", RowBox[{"\[Delta]1Ltotal", "/.", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["\[Delta]\[Phi]", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", "0"}], ",", RowBox[{ RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", "0"}]}], "}"}]}], ")"}]}], "//", "Expand"}]}], "\[IndentingNewLine]", RowBox[{"\[Delta]1Lh00", "=", RowBox[{ RowBox[{"\[Delta]1Ltotal", "-", RowBox[{"(", RowBox[{"\[Delta]1Ltotal", "/.", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["h00", TagBox[ RowBox[{"(", RowBox[{"0", ",", "2"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", "0"}], ",", RowBox[{ RowBox[{ SuperscriptBox["h00", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", "0"}], ",", RowBox[{ RowBox[{"h00", "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", "0"}]}], "}"}]}], ")"}]}], "//", "Expand"}]}], "\[IndentingNewLine]", RowBox[{"\[Delta]1Lhrr", "=", RowBox[{ RowBox[{"\[Delta]1Ltotal", "-", RowBox[{"(", RowBox[{"\[Delta]1Ltotal", "/.", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["hrr", TagBox[ RowBox[{"(", RowBox[{"2", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", "0"}], ",", RowBox[{ RowBox[{ SuperscriptBox["hrr", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", "0"}], ",", RowBox[{ RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", "0"}]}], "}"}]}], ")"}]}], "//", "Expand"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{ "\[Delta]1Ltotal", "-", "\[Delta]1L\[CapitalPhi]", "-", "\[Delta]1L\[Delta]\[CurlyPhi]", "-", "\[Delta]1L\[Delta]\[Phi]", "-", "\[Delta]1Lh00", "-", "\[Delta]1Lhrr"}], "//", "Expand", " ", RowBox[{"(*", RowBox[{"check", " ", "no", " ", "terms", " ", "are", " ", "left"}], "*)"}]}]}], "Input", CellFrame->0.5, CellChangeTimes->{{3.8482063168096237`*^9, 3.848206330011726*^9}, 3.848206506262869*^9, 3.848206685591201*^9, {3.848206737120302*^9, 3.8482067380912943`*^9}, 3.8482081446362743`*^9, 3.8482082229870853`*^9, 3.848211605418832*^9, {3.8482116516039953`*^9, 3.848212009157731*^9}, { 3.848212175057423*^9, 3.848212192490471*^9}}, Background->GrayLevel[0.85], CellLabel-> "In[515]:=",ExpressionUUID->"76795ede-65f5-42c6-a8b8-e314498ea8bf"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", RowBox[{"\[CurlyPhi]", "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[CapitalPhi]", TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}], "-", RowBox[{"2", " ", RowBox[{"\[CurlyPhi]", "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[CapitalPhi]", TagBox[ RowBox[{"(", RowBox[{"1", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}]}]], "Output", CellChangeTimes->{ 3.8482116060251493`*^9, {3.848211740136566*^9, 3.848211765705493*^9}, { 3.848211832509547*^9, 3.848211861430081*^9}, {3.848211945909197*^9, 3.848211982163859*^9}, 3.848212036826045*^9, 3.848217645681192*^9}, CellLabel-> "Out[516]=",ExpressionUUID->"c7baaa98-357d-45fc-b8d6-836694d7e877"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", RowBox[{"\[Delta]\[CurlyPhi]", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], "-", RowBox[{ RowBox[{ SuperscriptBox["\[CurlyPhi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[Delta]\[CurlyPhi]", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}]}]], "Output", CellChangeTimes->{ 3.8482116060251493`*^9, {3.848211740136566*^9, 3.848211765705493*^9}, { 3.848211832509547*^9, 3.848211861430081*^9}, {3.848211945909197*^9, 3.848211982163859*^9}, 3.848212036826045*^9, 3.84821764568372*^9}, CellLabel-> "Out[517]=",ExpressionUUID->"b87a90f8-3495-439c-9bf8-1eb153cdd037"], Cell[BoxData[ RowBox[{ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"2", " ", RowBox[{"A", "[", "r", "]"}]}]], " ", "\[Kappa]", " ", RowBox[{"L\[Phi]", "[", "r", "]"}], " ", RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}]}], "-", RowBox[{"\[Kappa]", " ", RowBox[{"LX", "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[Delta]\[Phi]", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}]}]], "Output", CellChangeTimes->{ 3.8482116060251493`*^9, {3.848211740136566*^9, 3.848211765705493*^9}, { 3.848211832509547*^9, 3.848211861430081*^9}, {3.848211945909197*^9, 3.848211982163859*^9}, 3.848212036826045*^9, 3.848217645685975*^9}, CellLabel-> "Out[518]=",ExpressionUUID->"e224112a-b2e8-49bf-996d-cc5d1e83534b"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"2", " ", RowBox[{"A", "[", "r", "]"}]}]], " ", "\[Kappa]", " ", RowBox[{"h00", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{"L", "[", "r", "]"}]}], "+", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"h00", "[", RowBox[{"t", ",", "r"}], "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[CurlyPhi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], "+", RowBox[{ RowBox[{"h00", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{"\[CurlyPhi]", "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], "+", RowBox[{ RowBox[{"\[CurlyPhi]", "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["h00", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}], "+", RowBox[{ RowBox[{"\[CurlyPhi]", "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["h00", TagBox[ RowBox[{"(", RowBox[{"0", ",", "2"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}]}]], "Output", CellChangeTimes->{ 3.8482116060251493`*^9, {3.848211740136566*^9, 3.848211765705493*^9}, { 3.848211832509547*^9, 3.848211861430081*^9}, {3.848211945909197*^9, 3.848211982163859*^9}, 3.848212036826045*^9, 3.848217645688334*^9}, CellLabel-> "Out[519]=",ExpressionUUID->"41dc7e55-782d-4388-8a8a-651110fc39ba"], Cell[BoxData[ RowBox[{ RowBox[{ FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"2", " ", RowBox[{"A", "[", "r", "]"}]}]], " ", "\[Kappa]", " ", RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{"L", "[", "r", "]"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{"LX", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], "+", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[CurlyPhi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], "+", RowBox[{ RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{"\[CurlyPhi]", "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], "+", RowBox[{ RowBox[{"\[CurlyPhi]", "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["hrr", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}], "+", RowBox[{ RowBox[{"\[CurlyPhi]", "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["hrr", TagBox[ RowBox[{"(", RowBox[{"2", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}]}]], "Output", CellChangeTimes->{ 3.8482116060251493`*^9, {3.848211740136566*^9, 3.848211765705493*^9}, { 3.848211832509547*^9, 3.848211861430081*^9}, {3.848211945909197*^9, 3.848211982163859*^9}, 3.848212036826045*^9, 3.848217645691337*^9}, CellLabel-> "Out[520]=",ExpressionUUID->"4e6a965e-2d05-4e17-8aee-8a4f5d61e580"], Cell[BoxData["0"], "Output", CellChangeTimes->{ 3.8482116060251493`*^9, {3.848211740136566*^9, 3.848211765705493*^9}, { 3.848211832509547*^9, 3.848211861430081*^9}, {3.848211945909197*^9, 3.848211982163859*^9}, 3.848212036826045*^9, 3.848217645694571*^9}, CellLabel-> "Out[521]=",ExpressionUUID->"29590d21-ba84-4df8-9231-307da7bfb7f3"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[TextData[{ "3.2 The dilaton gauge and the background field equations help us to \ simplify ", Cell[BoxData[ FormBox[ RowBox[{"\[Delta]2Ltot", "[", " ", "]"}], TraditionalForm]],ExpressionUUID-> "05b8816d-54d4-49aa-a783-6496e779abfc"], ". Let us call the result Simpd2L." }], "Subsection", CellChangeTimes->{{3.8482129889943542`*^9, 3.848213011784328*^9}, { 3.848213072456365*^9, 3.848213082914053*^9}, {3.848213386015251*^9, 3.8482134165656023`*^9}, {3.848213485572637*^9, 3.8482135152085333`*^9}, { 3.8482138150667953`*^9, 3.8482138155436773`*^9}},ExpressionUUID->"e1f64bd0-b553-4f16-820c-\ 97047ca5da0b"], Cell[BoxData[ RowBox[{ RowBox[{"Simpd2L", "=", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"\[Delta]2Ltot", "[", "]"}], "/.", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["\[Delta]\[CurlyPhi]", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", "0"}], ",", RowBox[{ RowBox[{ SuperscriptBox["\[Delta]\[CurlyPhi]", TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", "0"}], ",", RowBox[{ RowBox[{"\[Delta]\[CurlyPhi]", "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", "0"}]}], "}"}]}], "/.", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ RowBox[{"\[CurlyPhi]", "''"}], "[", "r", "]"}], "\[Rule]", " ", RowBox[{"2", RowBox[{ RowBox[{"A", "''"}], "[", "r", "]"}]}]}], ",", RowBox[{ RowBox[{ RowBox[{"\[CurlyPhi]", "'"}], "[", "r", "]"}], "\[Rule]", " ", RowBox[{"2", RowBox[{ RowBox[{"A", "'"}], "[", "r", "]"}]}]}], ",", RowBox[{ RowBox[{"\[CurlyPhi]", "[", "r", "]"}], "\[Rule]", " ", RowBox[{"2", RowBox[{"A", "[", "r", "]"}]}]}]}], "}"}]}], "/.", RowBox[{"{", RowBox[{ RowBox[{"L", "[", "r", "]"}], "\[Rule]", RowBox[{"-", FractionBox[ RowBox[{"2", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "2"}], " ", RowBox[{"A", "[", "r", "]"}]}]], " ", RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"], "-", RowBox[{"2", " ", RowBox[{ SuperscriptBox["A", "\[Prime]\[Prime]", MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}], "\[Kappa]"]}]}], "}"}]}], "/.", RowBox[{"{", RowBox[{ RowBox[{"L\[Phi]", "[", "r", "]"}], "\[Rule]", RowBox[{ RowBox[{"-", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "2"}], " ", RowBox[{"A", "[", "r", "]"}]}]]}], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["LX", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], "+", RowBox[{ RowBox[{"LX", "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]\[Prime]", MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]}], "}"}]}], "/.", RowBox[{"{", RowBox[{ RowBox[{ SuperscriptBox["A", "\[Prime]\[Prime]", MultilineFunction->None], "[", "r", "]"}], "\[Rule]", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"4", " ", SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], "-", RowBox[{"\[Kappa]", " ", RowBox[{"LX", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}]}], ")"}]}]}], "}"}]}], "/.", RowBox[{"{", RowBox[{ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]\[Prime]", MultilineFunction->None], "[", "r", "]"}], "\[Rule]", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], "+", FractionBox[ RowBox[{ RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], RowBox[{"2", " ", RowBox[{"X", "[", "r", "]"}]}]]}]}], "}"}]}], "//", "Expand"}]}], ";"}]], "Input", CellFrame->0.5, Background->GrayLevel[0.85], CellLabel-> "In[522]:=",ExpressionUUID->"1057bb76-da6c-4e99-a02c-1238eb0a6ae6"], Cell[TextData[{ StyleBox["Simpd2L can be separated into four parts. ", FontColor->RGBColor[0, 0, 1]], StyleBox["But be careful", FontWeight->"Bold", FontColor->RGBColor[1, 0, 0]], StyleBox[", there are cross terms, don\[CloseCurlyQuote]t overcount them!", FontColor->RGBColor[0, 0, 1]] }], "Text", CellChangeTimes->{{3.848212749641594*^9, 3.848212768037459*^9}, { 3.848213093022634*^9, 3.8482130977934933`*^9}, {3.8482131373210497`*^9, 3.848213166752899*^9}, {3.848213532909108*^9, 3.84821354306461*^9}, { 3.8482135943615007`*^9, 3.848213621257566*^9}, {3.8482138256198187`*^9, 3.848213834776194*^9}},ExpressionUUID->"ab813aab-30c1-4478-802d-\ 57660cafb8ee"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"\[CapitalPhi]Terms", "=", RowBox[{ RowBox[{"Simpd2L", "-", RowBox[{"(", RowBox[{"Simpd2L", "/.", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["\[CapitalPhi]", TagBox[ RowBox[{"(", RowBox[{"1", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", "0"}], ",", RowBox[{ RowBox[{ SuperscriptBox["\[CapitalPhi]", TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", "0"}], ",", RowBox[{ RowBox[{ SuperscriptBox["\[CapitalPhi]", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", "0"}], ",", RowBox[{ RowBox[{"\[CapitalPhi]", "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", "0"}]}], "}"}]}], ")"}]}], "//", "Expand"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"TermsNo\[CapitalPhi]", "=", RowBox[{"Simpd2L", "-", "\[CapitalPhi]Terms"}]}], ";", " ", RowBox[{"(*", RowBox[{ "prevent", " ", "overcounting", " ", "the", " ", "cross", " ", "terms"}], "*)"}], "\[IndentingNewLine]", RowBox[{"h00Terms", "=", RowBox[{"TermsNo\[CapitalPhi]", "-", RowBox[{"(", RowBox[{"TermsNo\[CapitalPhi]", "/.", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["h00", TagBox[ RowBox[{"(", RowBox[{"0", ",", "2"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", "0"}], ",", RowBox[{ RowBox[{ SuperscriptBox["h00", TagBox[ RowBox[{"(", RowBox[{"1", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", "0"}], ",", RowBox[{ RowBox[{ SuperscriptBox["h00", TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", "0"}], ",", RowBox[{ RowBox[{ SuperscriptBox["h00", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", "0"}], ",", RowBox[{ RowBox[{"h00", "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", "0"}]}], "}"}]}], ")"}]}]}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"TermsNo\[CapitalPhi]Noh00", "=", RowBox[{ RowBox[{"Simpd2L", "-", "\[CapitalPhi]Terms", "-", "h00Terms"}], "//", "Expand"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"hrrTerms", "=", RowBox[{ RowBox[{"TermsNo\[CapitalPhi]Noh00", "-", RowBox[{"(", RowBox[{"TermsNo\[CapitalPhi]Noh00", "/.", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["hrr", TagBox[ RowBox[{"(", RowBox[{"0", ",", "2"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", "0"}], ",", RowBox[{ RowBox[{ SuperscriptBox["hrr", TagBox[ RowBox[{"(", RowBox[{"1", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", "0"}], ",", RowBox[{ RowBox[{ SuperscriptBox["hrr", TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", "0"}], ",", RowBox[{ RowBox[{ SuperscriptBox["hrr", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", "0"}], ",", RowBox[{ RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", "0"}]}], "}"}]}], ")"}]}], "//", "Expand"}]}], "\[IndentingNewLine]", RowBox[{"\[Delta]\[Phi]Terms", "=", RowBox[{ RowBox[{"TermsNo\[CapitalPhi]Noh00", "-", "hrrTerms"}], "//", "Expand"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{ "Simpd2L", "-", "\[CapitalPhi]Terms", "-", "h00Terms", "-", "hrrTerms", "-", "\[Delta]\[Phi]Terms"}], "//", "Expand", RowBox[{"(*", RowBox[{"check", " ", "no", " ", "terms", " ", "are", " ", "left"}], "*)"}]}]}], "Input", CellFrame->0.5, CellChangeTimes->{{3.846212208789522*^9, 3.846212212874032*^9}, { 3.846212258731398*^9, 3.846212274968944*^9}, {3.846212326196354*^9, 3.846212326641349*^9}, 3.8462124509030046`*^9, 3.846234960832012*^9, { 3.846235054070681*^9, 3.84623517479031*^9}, {3.846235272284287*^9, 3.846235329444632*^9}, {3.846235400621834*^9, 3.8462354937332582`*^9}, 3.846235565560708*^9, {3.846235608164407*^9, 3.846235651259218*^9}, { 3.846235778935405*^9, 3.846235795187017*^9}, {3.846235897341496*^9, 3.846235937964127*^9}, {3.846236041547061*^9, 3.846236042031005*^9}, 3.846236082500867*^9, {3.846238438825536*^9, 3.846238453688471*^9}, { 3.846238508828519*^9, 3.846238557042604*^9}, {3.846238596316519*^9, 3.846238621284936*^9}, {3.846238893811038*^9, 3.846238998871072*^9}, { 3.846239057578226*^9, 3.846239135287776*^9}, {3.846276451960414*^9, 3.846276501987352*^9}, {3.84627676455431*^9, 3.846276832482236*^9}, { 3.8464504898090363`*^9, 3.8464504971977797`*^9}, 3.846450533610688*^9, { 3.8464505954828053`*^9, 3.846450670915166*^9}, {3.8468148191732407`*^9, 3.8468148479206333`*^9}, 3.8468150027782183`*^9, {3.846818892766096*^9, 3.8468189197019176`*^9}, 3.846920540556887*^9, {3.848206779567993*^9, 3.848206784723055*^9}, {3.848206817182599*^9, 3.848206878227088*^9}, { 3.848213225486763*^9, 3.84821335697715*^9}}, Background->GrayLevel[0.85], CellLabel-> "In[645]:=",ExpressionUUID->"d49bd028-011e-454f-acca-906028ce90fb"], Cell[BoxData[ RowBox[{ RowBox[{"2", " ", SuperscriptBox[ RowBox[{"\[CapitalPhi]", "[", RowBox[{"t", ",", "r"}], "]"}], "2"], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], "+", RowBox[{"2", " ", RowBox[{"A", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{"\[CapitalPhi]", "[", RowBox[{"t", ",", "r"}], "]"}], "2"], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", RowBox[{"A", "[", "r", "]"}], " ", RowBox[{"LX", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{"\[CapitalPhi]", "[", RowBox[{"t", ",", "r"}], "]"}], "2"], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], "+", RowBox[{"4", " ", RowBox[{"A", "[", "r", "]"}], " ", RowBox[{"\[CapitalPhi]", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[CapitalPhi]", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}], "-", RowBox[{"2", " ", RowBox[{"A", "[", "r", "]"}], " ", RowBox[{"\[CapitalPhi]", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["h00", TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}], "-", RowBox[{"2", " ", RowBox[{"A", "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[CapitalPhi]", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["h00", TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}], "+", RowBox[{"2", " ", RowBox[{"A", "[", "r", "]"}], " ", RowBox[{"\[CapitalPhi]", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["hrr", TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}], "-", RowBox[{"\[Kappa]", " ", RowBox[{"LX", "[", "r", "]"}], " ", RowBox[{"\[CapitalPhi]", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[Delta]\[Phi]", TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}], "-", RowBox[{"2", " ", RowBox[{"A", "[", "r", "]"}], " ", RowBox[{"h00", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[CapitalPhi]", TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}], "+", RowBox[{"2", " ", RowBox[{"A", "[", "r", "]"}], " ", RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[CapitalPhi]", TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}], "+", RowBox[{"2", " ", RowBox[{"A", "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["hrr", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["\[CapitalPhi]", TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}], "-", RowBox[{"2", " ", RowBox[{"A", "[", "r", "]"}], " ", RowBox[{"h00", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["\[CapitalPhi]", TagBox[ RowBox[{"(", RowBox[{"1", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}], "+", RowBox[{"2", " ", RowBox[{"A", "[", "r", "]"}], " ", RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["\[CapitalPhi]", TagBox[ RowBox[{"(", RowBox[{"1", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}]}]], "Output", CellChangeTimes->{3.848212732390258*^9, 3.8482132862780523`*^9, 3.8482133579916153`*^9, 3.848217525849144*^9, 3.848217655845244*^9, 3.848218595901526*^9}, CellLabel-> "Out[645]=",ExpressionUUID->"feadc30d-4ca0-49a1-8087-4658d68cff7d"], Cell[BoxData[ RowBox[{ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"A", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{"h00", "[", RowBox[{"t", ",", "r"}], "]"}], "2"], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], "-", RowBox[{ RowBox[{"h00", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], "-", RowBox[{ RowBox[{"A", "[", "r", "]"}], " ", RowBox[{"h00", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", RowBox[{"h00", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{"LX", "[", "r", "]"}], " ", RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", RowBox[{"h00", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["LX", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], "+", FractionBox[ RowBox[{"\[Kappa]", " ", RowBox[{"h00", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{"LX", "[", "r", "]"}], " ", RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], RowBox[{"4", " ", RowBox[{"X", "[", "r", "]"}]}]], "+", RowBox[{ FractionBox["1", "8"], " ", "\[Kappa]", " ", SuperscriptBox[ RowBox[{"h00", "[", RowBox[{"t", ",", "r"}], "]"}], "2"], " ", RowBox[{"LX", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], "-", RowBox[{ FractionBox["1", "8"], " ", "\[Kappa]", " ", RowBox[{"A", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{"h00", "[", RowBox[{"t", ",", "r"}], "]"}], "2"], " ", RowBox[{"LX", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], "+", RowBox[{ FractionBox["1", "4"], " ", "\[Kappa]", " ", RowBox[{"A", "[", "r", "]"}], " ", RowBox[{"h00", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{"LX", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], "+", RowBox[{ RowBox[{"A", "[", "r", "]"}], " ", RowBox[{"h00", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["h00", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}], "-", RowBox[{ RowBox[{"A", "[", "r", "]"}], " ", RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["h00", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}], "+", RowBox[{ RowBox[{"A", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["h00", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "2"]}], "-", RowBox[{ RowBox[{"A", "[", "r", "]"}], " ", RowBox[{"h00", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["hrr", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}], "-", RowBox[{ RowBox[{"A", "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["h00", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["hrr", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", RowBox[{"h00", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{"LX", "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[Delta]\[Phi]", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}], "+", RowBox[{ RowBox[{"A", "[", "r", "]"}], " ", RowBox[{"h00", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["h00", TagBox[ RowBox[{"(", RowBox[{"0", ",", "2"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}], "-", RowBox[{ RowBox[{"A", "[", "r", "]"}], " ", RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["h00", TagBox[ RowBox[{"(", RowBox[{"0", ",", "2"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}], "+", RowBox[{ RowBox[{"A", "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["h00", TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["hrr", TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}], "+", RowBox[{ RowBox[{"A", "[", "r", "]"}], " ", RowBox[{"h00", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["hrr", TagBox[ RowBox[{"(", RowBox[{"2", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}]}]], "Output", CellChangeTimes->{3.848212732390258*^9, 3.8482132862780523`*^9, 3.8482133579916153`*^9, 3.848217525849144*^9, 3.848217655845244*^9, 3.848218595907424*^9}, CellLabel-> "Out[646]=",ExpressionUUID->"b189ac00-1a7c-4b6c-a684-1f49f42df9a3"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], "2"]}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], "-", RowBox[{ FractionBox["3", "2"], " ", RowBox[{"A", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], "2"], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{"LX", "[", "r", "]"}], " ", RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["LX", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], "-", FractionBox[ RowBox[{"\[Kappa]", " ", RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{"LX", "[", "r", "]"}], " ", RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], RowBox[{"4", " ", RowBox[{"X", "[", "r", "]"}]}]], "-", RowBox[{ FractionBox["1", "8"], " ", "\[Kappa]", " ", SuperscriptBox[ RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], "2"], " ", RowBox[{"LX", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], "+", RowBox[{ FractionBox["3", "8"], " ", "\[Kappa]", " ", RowBox[{"A", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], "2"], " ", RowBox[{"LX", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{"LX\[Phi]", "[", "r", "]"}], " ", RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], "+", RowBox[{ FractionBox["1", "8"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "2"}], " ", RowBox[{"A", "[", "r", "]"}]}]], " ", "\[Kappa]", " ", SuperscriptBox[ RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], "2"], " ", RowBox[{"LXX", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "4"]}], "-", RowBox[{"3", " ", RowBox[{"A", "[", "r", "]"}], " ", RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["hrr", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{"LX", "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[Delta]\[Phi]", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "2"}], " ", RowBox[{"A", "[", "r", "]"}]}]], " ", "\[Kappa]", " ", RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{"LXX", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "3"], " ", RowBox[{ SuperscriptBox["\[Delta]\[Phi]", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}], "-", RowBox[{ RowBox[{"A", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["hrr", TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "2"]}], "-", RowBox[{ RowBox[{"A", "[", "r", "]"}], " ", RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["hrr", TagBox[ RowBox[{"(", RowBox[{"2", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}]}]], "Output", CellChangeTimes->{3.848212732390258*^9, 3.8482132862780523`*^9, 3.8482133579916153`*^9, 3.848217525849144*^9, 3.848217655845244*^9, 3.848218595915955*^9}, CellLabel-> "Out[648]=",ExpressionUUID->"9aeff4b2-c180-45df-9770-6402c61b5cd2"], Cell[BoxData[ RowBox[{ RowBox[{ FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"2", " ", RowBox[{"A", "[", "r", "]"}]}]], " ", "\[Kappa]", " ", RowBox[{"L\[Phi]\[Phi]", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], "2"]}], "-", RowBox[{"\[Kappa]", " ", RowBox[{"LX\[Phi]", "[", "r", "]"}], " ", RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[Delta]\[Phi]", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", RowBox[{"LX", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Delta]\[Phi]", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "2"]}], "+", RowBox[{ FractionBox["1", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "2"}], " ", RowBox[{"A", "[", "r", "]"}]}]], " ", "\[Kappa]", " ", RowBox[{"LXX", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Delta]\[Phi]", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "2"]}], "+", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", RowBox[{"LX", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Delta]\[Phi]", TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "2"]}]}]], "Output", CellChangeTimes->{3.848212732390258*^9, 3.8482132862780523`*^9, 3.8482133579916153`*^9, 3.848217525849144*^9, 3.848217655845244*^9, 3.8482185959204493`*^9}, CellLabel-> "Out[649]=",ExpressionUUID->"a25223a6-88a0-4b07-a43c-980711d32562"], Cell[BoxData["0"], "Output", CellChangeTimes->{3.848212732390258*^9, 3.8482132862780523`*^9, 3.8482133579916153`*^9, 3.848217525849144*^9, 3.848217655845244*^9, 3.8482185959232197`*^9}, CellLabel-> "Out[650]=",ExpressionUUID->"41f9be70-98b7-4ec6-85eb-904b2fd27076"] }, Open ]], Cell[TextData[StyleBox["To continue, we try to simplify each of the above \ four parts. After doing the partial integrations, don\[CloseCurlyQuote]t \ forget to eliminate A\[CloseCurlyQuote]\[CloseCurlyQuote], \[Phi]\ \[CloseCurlyQuote]\[CloseCurlyQuote],... as we want to express the \ coefficients in terms of only A\[CloseCurlyQuote], \[Phi]\[CloseCurlyQuote], \ \[Gamma], LX, X, and the derivatives of \[Gamma], LX, X.", FontColor->RGBColor[0, 0, 1]]], "Text", CellChangeTimes->{{3.848213952589408*^9, 3.848214005530306*^9}, { 3.8482140374338837`*^9, 3.848214071081663*^9}, {3.848214106842821*^9, 3.84821418392136*^9}, {3.8482142147132473`*^9, 3.848214261108079*^9}, { 3.8482143201961737`*^9, 3.848214343844288*^9}},ExpressionUUID->"d0441159-fd68-4b4e-865d-\ 22fa2d628f6e"], Cell[BoxData[ RowBox[{ RowBox[{"rep", "=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["A", "\[Prime]\[Prime]", MultilineFunction->None], "[", "r", "]"}], "\[Rule]", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"4", " ", SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], "-", RowBox[{"\[Kappa]", " ", RowBox[{"LX", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}]}], ")"}]}]}], " ", ",", RowBox[{ RowBox[{ SuperscriptBox["\[Phi]", TagBox[ RowBox[{"(", "3", ")"}], Derivative], MultilineFunction->None], "[", "r", "]"}], "\[Rule]", RowBox[{ RowBox[{"2", " ", SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], "+", FractionBox[ RowBox[{ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], RowBox[{"X", "[", "r", "]"}]], "-", FractionBox[ RowBox[{ SuperscriptBox[ RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], RowBox[{"4", " ", SuperscriptBox[ RowBox[{"X", "[", "r", "]"}], "2"]}]], "-", RowBox[{ FractionBox["1", "4"], " ", "\[Kappa]", " ", RowBox[{"LX", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "3"]}], "+", FractionBox[ RowBox[{ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["X", "\[Prime]\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], RowBox[{"2", " ", RowBox[{"X", "[", "r", "]"}]}]]}]}], ",", RowBox[{ RowBox[{"LX\[Phi]", "[", "r", "]"}], "\[Rule]", RowBox[{ FractionBox[ RowBox[{ SuperscriptBox["LX", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]], "+", FractionBox[ RowBox[{ RowBox[{"LX", "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], RowBox[{"2", " ", RowBox[{"X", "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}]], "-", FractionBox[ RowBox[{ RowBox[{"LX", "[", "r", "]"}], " ", RowBox[{"\[Gamma]", "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], RowBox[{"2", " ", RowBox[{"X", "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}]]}]}], ",", RowBox[{ RowBox[{"LXX", "[", "r", "]"}], "\[Rule]", FractionBox[ RowBox[{ RowBox[{"LX", "[", "r", "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"\[Gamma]", "[", "r", "]"}]}], ")"}]}], RowBox[{"2", " ", RowBox[{"X", "[", "r", "]"}]}]]}], ",", RowBox[{ RowBox[{"L\[Phi]\[Phi]", "[", "r", "]"}], "\[Rule]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[Kappa]", " ", SuperscriptBox[ RowBox[{"LX", "[", "r", "]"}], "2"], " ", RowBox[{"X", "[", "r", "]"}]}], "+", FractionBox[ RowBox[{ RowBox[{ SuperscriptBox["LX", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]], "-", FractionBox[ RowBox[{ RowBox[{"LX", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], RowBox[{ RowBox[{"X", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}]], "+", FractionBox[ RowBox[{ RowBox[{"LX", "[", "r", "]"}], " ", RowBox[{"\[Gamma]", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], RowBox[{"2", " ", RowBox[{"X", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}]], "+", FractionBox[ RowBox[{"2", " ", RowBox[{"X", "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["LX", "\[Prime]\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]], "+", FractionBox[ RowBox[{ RowBox[{"LX", "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["X", "\[Prime]\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]]}]}], ",", RowBox[{ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]\[Prime]", MultilineFunction->None], "[", "r", "]"}], "\[Rule]", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], "+", FractionBox[ RowBox[{ RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], RowBox[{"2", " ", RowBox[{"X", "[", "r", "]"}]}]]}]}]}], "}"}]}], ";"}]], "Input", CellFrame->0.5, CellChangeTimes->{ 3.846817556383555*^9, {3.846818794009411*^9, 3.846818796192168*^9}, 3.846819025089489*^9, {3.8469203497081594`*^9, 3.846920376457212*^9}}, Background->RGBColor[0.87, 0.94, 1], CellLabel-> "In[529]:=",ExpressionUUID->"30acc87d-6a59-4182-97bb-d26c65e51018"] }, Open ]], Cell[CellGroupData[{ Cell["3.3 The simplification of h00 terms", "Subsection", CellChangeTimes->{{3.84820743617896*^9, 3.848207447550709*^9}, { 3.8482201825888643`*^9, 3.848220182891817*^9}},ExpressionUUID->"444c7f84-13f2-4f2b-8c0d-\ e8162ddf0c05"], Cell[TextData[StyleBox["We first transfer all the derivatives on hrr and \ \[Delta]\[Phi] to h00 by using partial integrations, and call the result \ Lh00New", FontColor->RGBColor[0, 0, 1]]], "Text", CellChangeTimes->{{3.848216616762191*^9, 3.8482166690488977`*^9}, { 3.848216769254263*^9, 3.848216770076808*^9}, {3.8482170478552732`*^9, 3.848217052664558*^9}},ExpressionUUID->"934e3e18-13bd-48ba-b4fc-\ 489b10626242"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"Lh00", "=", RowBox[{"h00Terms", "//", "Expand"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Lhrrdtdt", "=", " ", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["hrr", TagBox[ RowBox[{"(", RowBox[{"2", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], RowBox[{"(", RowBox[{ SubscriptBox["\[PartialD]", RowBox[{" ", RowBox[{ SuperscriptBox["hrr", TagBox[ RowBox[{"(", RowBox[{"2", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}]], "Lh00"}], ")"}]}], "//", "Expand"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Lhrrdt", "=", " ", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["hrr", TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], RowBox[{"(", RowBox[{ SubscriptBox["\[PartialD]", RowBox[{" ", RowBox[{ SuperscriptBox["hrr", TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}]], "Lh00"}], ")"}]}], "//", "Expand"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Lhrrdr", "=", " ", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["hrr", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], RowBox[{"(", RowBox[{ SubscriptBox["\[PartialD]", RowBox[{" ", RowBox[{ SuperscriptBox["hrr", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}]], "Lh00"}], ")"}]}], "//", "Expand"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"L\[Delta]\[Phi]dr", "=", " ", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["\[Delta]\[Phi]", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], RowBox[{"(", RowBox[{ SubscriptBox["\[PartialD]", RowBox[{" ", RowBox[{ SuperscriptBox["\[Delta]\[Phi]", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}]], "Lh00"}], ")"}]}], "//", "Expand"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Lh00Left", "=", RowBox[{ RowBox[{ "Lh00", "-", "Lhrrdtdt", "-", "Lhrrdt", "-", "Lhrrdr", "-", "L\[Delta]\[Phi]dr"}], "//", "Expand"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"Lh00New", "=", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"t", ",", "t"}]], FractionBox["Lhrrdtdt", RowBox[{ SuperscriptBox["hrr", TagBox[ RowBox[{"(", RowBox[{"2", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]]}]}], "-", RowBox[{ RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], RowBox[{ SubscriptBox["\[PartialD]", "t"], FractionBox["Lhrrdt", RowBox[{ SuperscriptBox["hrr", TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]]}]}], "-", RowBox[{ RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], RowBox[{ SubscriptBox["\[PartialD]", "r"], FractionBox["Lhrrdr", RowBox[{ SuperscriptBox["hrr", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]]}]}], "-", RowBox[{ RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], RowBox[{ SubscriptBox["\[PartialD]", "r"], FractionBox["L\[Delta]\[Phi]dr", RowBox[{ SuperscriptBox["\[Delta]\[Phi]", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]]}]}], "+", "Lh00Left"}], "/.", "rep"}], "//", "Expand"}]}]}], "Input", CellFrame->0.5, CellChangeTimes->{{3.846817678722796*^9, 3.846817695633616*^9}, { 3.846817748924437*^9, 3.846817750530963*^9}, {3.848214844512466*^9, 3.848214875532703*^9}, {3.848215709512808*^9, 3.8482157526246357`*^9}, { 3.848215785156218*^9, 3.848215816396707*^9}, {3.848215850302019*^9, 3.848215880507406*^9}, {3.84821598107381*^9, 3.848216063831105*^9}, { 3.848216104640533*^9, 3.848216165877613*^9}, {3.8482162189147778`*^9, 3.8482164722452307`*^9}, 3.848216553302093*^9, 3.8482167274174137`*^9, { 3.84821852366735*^9, 3.848218523842657*^9}, 3.848218616973015*^9}, Background->GrayLevel[0.85], CellLabel-> "In[658]:=",ExpressionUUID->"ca60fdd2-0438-4536-aa37-8d3fb89fe137"], Cell[BoxData[ RowBox[{ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"A", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{"h00", "[", RowBox[{"t", ",", "r"}], "]"}], "2"], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], "+", RowBox[{ FractionBox["1", "8"], " ", "\[Kappa]", " ", SuperscriptBox[ RowBox[{"h00", "[", RowBox[{"t", ",", "r"}], "]"}], "2"], " ", RowBox[{"LX", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], "-", RowBox[{ FractionBox["1", "8"], " ", "\[Kappa]", " ", RowBox[{"A", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{"h00", "[", RowBox[{"t", ",", "r"}], "]"}], "2"], " ", RowBox[{"LX", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], "+", RowBox[{ RowBox[{"A", "[", "r", "]"}], " ", RowBox[{"h00", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["h00", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}], "+", RowBox[{ RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["h00", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", RowBox[{"LX", "[", "r", "]"}], " ", RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["h00", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}], "+", RowBox[{ RowBox[{"A", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["h00", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "2"]}], "+", RowBox[{ RowBox[{"A", "[", "r", "]"}], " ", RowBox[{"h00", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["h00", TagBox[ RowBox[{"(", RowBox[{"0", ",", "2"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}]}]], "Output", CellChangeTimes->{ 3.848214391526119*^9, 3.8482148763144913`*^9, 3.848215755023233*^9, 3.848215881639085*^9, 3.848215997944261*^9, {3.848216046489787*^9, 3.848216064437574*^9}, 3.8482161319564867`*^9, 3.848216166473628*^9, 3.848216226119071*^9, 3.84821627154886*^9, {3.848216429204544*^9, 3.84821643866389*^9}, 3.8482164728517017`*^9, 3.848217547064662*^9, 3.848217667924074*^9, {3.848218533105626*^9, 3.848218551641753*^9}, { 3.848218600530658*^9, 3.848218620024791*^9}}, CellLabel-> "Out[664]=",ExpressionUUID->"59ff5e0e-b6fc-4800-abd9-83a25197741d"] }, Open ]], Cell[TextData[StyleBox["Then we separate Lh00New into the quadratic terms of \ h00, and the cross terms", FontColor->RGBColor[0, 0, 1]]], "Text", CellChangeTimes->{{3.848216794945922*^9, 3.848216827734507*^9}, { 3.848216887009716*^9, 3.848216911218287*^9}},ExpressionUUID->"a2f7ab39-7fd0-439d-b09d-\ ee2f53e58c64"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"h00quadTerm", "=", RowBox[{ RowBox[{"Lh00New", "/.", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", "0"}], ",", RowBox[{ RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", "0"}]}], "}"}]}], "//", "Expand"}]}], "\[IndentingNewLine]", RowBox[{"h00CrosTerm", "=", RowBox[{ RowBox[{"Lh00New", "-", "h00quadTerm"}], "//", "Expand"}]}]}], "Input", CellFrame->0.5, CellChangeTimes->{{3.848216851251443*^9, 3.848216875683929*^9}, { 3.848216915508689*^9, 3.848216972373211*^9}}, Background->GrayLevel[0.85], CellLabel-> "In[665]:=",ExpressionUUID->"c75aaf42-08d2-431c-bc5a-0c4f851491f7"], Cell[BoxData[ RowBox[{ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"A", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{"h00", "[", RowBox[{"t", ",", "r"}], "]"}], "2"], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], "+", RowBox[{ FractionBox["1", "8"], " ", "\[Kappa]", " ", SuperscriptBox[ RowBox[{"h00", "[", RowBox[{"t", ",", "r"}], "]"}], "2"], " ", RowBox[{"LX", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], "-", RowBox[{ FractionBox["1", "8"], " ", "\[Kappa]", " ", RowBox[{"A", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{"h00", "[", RowBox[{"t", ",", "r"}], "]"}], "2"], " ", RowBox[{"LX", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], "+", RowBox[{ RowBox[{"A", "[", "r", "]"}], " ", RowBox[{"h00", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["h00", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}], "+", RowBox[{ RowBox[{"A", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["h00", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "2"]}], "+", RowBox[{ RowBox[{"A", "[", "r", "]"}], " ", RowBox[{"h00", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["h00", TagBox[ RowBox[{"(", RowBox[{"0", ",", "2"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}]}]], "Output", CellChangeTimes->{3.848216973005002*^9, 3.848217550644414*^9, 3.848217670799419*^9, 3.848218588428906*^9, 3.8482186227303467`*^9}, CellLabel-> "Out[665]=",ExpressionUUID->"3a58ebe6-3ed0-466a-b7b6-4714ef9f660c"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["h00", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", RowBox[{"LX", "[", "r", "]"}], " ", RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["h00", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}]}]], "Output", CellChangeTimes->{3.848216973005002*^9, 3.848217550644414*^9, 3.848217670799419*^9, 3.848218588428906*^9, 3.848218622734152*^9}, CellLabel-> "Out[666]=",ExpressionUUID->"894c4dc4-7984-4b2a-a8f5-977f2134f539"] }, Open ]], Cell[TextData[StyleBox["One can show that the quadratic terms of h00 vanishes \ up to a boundary term", FontColor->RGBColor[0, 0, 1]]], "Text", CellChangeTimes->{ 3.848217165537159*^9},ExpressionUUID->"f15a5067-7d19-415a-9490-\ b6d28603770f"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"h00drdrh00", "=", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["h00", TagBox[ RowBox[{"(", RowBox[{"0", ",", "2"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], RowBox[{ SubscriptBox["\[PartialD]", RowBox[{ SuperscriptBox["h00", TagBox[ RowBox[{"(", RowBox[{"0", ",", "2"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]], "h00quadTerm"}]}], "//", "Expand"}]}], "\[IndentingNewLine]", RowBox[{"h00drSqr", "=", RowBox[{ FractionBox["1", "2"], SuperscriptBox[ RowBox[{ SuperscriptBox["h00", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "2"], RowBox[{ SubscriptBox["\[PartialD]", RowBox[{ RowBox[{ SuperscriptBox["h00", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], ",", RowBox[{ SuperscriptBox["h00", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}]], "h00quadTerm"}]}]}], "\[IndentingNewLine]", RowBox[{"h00drh00", "=", RowBox[{ RowBox[{"h00", "[", RowBox[{"t", ",", "r"}], "]"}], RowBox[{ SuperscriptBox["h00", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], RowBox[{ SubscriptBox["\[PartialD]", RowBox[{ RowBox[{ SuperscriptBox["h00", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], ",", RowBox[{"h00", "[", RowBox[{"t", ",", "r"}], "]"}]}]], "h00quadTerm"}]}]}], "\[IndentingNewLine]", RowBox[{"h00Sqr", "=", RowBox[{ RowBox[{ "h00quadTerm", "-", "h00drdrh00", "-", "h00drSqr", "-", "h00drh00"}], "//", "Expand"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ RowBox[{ FractionBox[ RowBox[{"-", "1"}], "2"], SuperscriptBox[ RowBox[{"h00", "[", RowBox[{"t", ",", "r"}], "]"}], "2"], RowBox[{ SubscriptBox["\[PartialD]", "r"], FractionBox[ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", RowBox[{ SuperscriptBox["h00", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}], RowBox[{ SubscriptBox["\[PartialD]", "r"], FractionBox["h00drdrh00", RowBox[{ SuperscriptBox["h00", TagBox[ RowBox[{"(", RowBox[{"0", ",", "2"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]]}]}], "+", "h00drSqr", "+", "h00drh00"}], ")"}], RowBox[{ RowBox[{ SuperscriptBox["h00", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], RowBox[{"h00", "[", RowBox[{"t", ",", "r"}], "]"}]}]]}]}], "+", "h00Sqr"}], "/.", "rep"}], "//", "Expand"}]}], "Input", CellFrame->0.5, CellChangeTimes->{{3.848216851251443*^9, 3.848216875683929*^9}, { 3.848216915508689*^9, 3.848216972373211*^9}, {3.8482172323143263`*^9, 3.8482174033209753`*^9}, {3.8482176957026052`*^9, 3.848217752234167*^9}, { 3.848217811574531*^9, 3.848217938162609*^9}}, Background->GrayLevel[0.85], CellLabel-> "In[667]:=",ExpressionUUID->"bb92428d-1b7d-4c95-9431-064a2d522804"], Cell[BoxData[ RowBox[{ RowBox[{"A", "[", "r", "]"}], " ", RowBox[{"h00", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["h00", TagBox[ RowBox[{"(", RowBox[{"0", ",", "2"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}]], "Output", CellChangeTimes->{ 3.848217190765051*^9, 3.8482172780453053`*^9, {3.8482173285751266`*^9, 3.8482173378028173`*^9}, {3.848217374189365*^9, 3.848217401130124*^9}, 3.848217674189499*^9, {3.848217731428677*^9, 3.848217752702443*^9}, { 3.848217851123131*^9, 3.848217884513137*^9}, {3.8482179259645243`*^9, 3.84821793881358*^9}, 3.848218625215582*^9}, CellLabel-> "Out[667]=",ExpressionUUID->"a1465e1b-3ad5-4333-9a1d-951bca8b63a9"], Cell[BoxData[ RowBox[{ RowBox[{"A", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["h00", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "2"]}]], "Output", CellChangeTimes->{ 3.848217190765051*^9, 3.8482172780453053`*^9, {3.8482173285751266`*^9, 3.8482173378028173`*^9}, {3.848217374189365*^9, 3.848217401130124*^9}, 3.848217674189499*^9, {3.848217731428677*^9, 3.848217752702443*^9}, { 3.848217851123131*^9, 3.848217884513137*^9}, {3.8482179259645243`*^9, 3.84821793881358*^9}, 3.8482186252194633`*^9}, CellLabel-> "Out[668]=",ExpressionUUID->"065b0754-ad43-48f7-98ef-aa816e02ba7c"], Cell[BoxData[ RowBox[{ RowBox[{"A", "[", "r", "]"}], " ", RowBox[{"h00", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["h00", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}]], "Output", CellChangeTimes->{ 3.848217190765051*^9, 3.8482172780453053`*^9, {3.8482173285751266`*^9, 3.8482173378028173`*^9}, {3.848217374189365*^9, 3.848217401130124*^9}, 3.848217674189499*^9, {3.848217731428677*^9, 3.848217752702443*^9}, { 3.848217851123131*^9, 3.848217884513137*^9}, {3.8482179259645243`*^9, 3.84821793881358*^9}, 3.848218625224373*^9}, CellLabel-> "Out[669]=",ExpressionUUID->"98c417ee-aa78-41a7-9421-793074d118de"], Cell[BoxData[ RowBox[{ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"A", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{"h00", "[", RowBox[{"t", ",", "r"}], "]"}], "2"], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], "+", RowBox[{ FractionBox["1", "8"], " ", "\[Kappa]", " ", SuperscriptBox[ RowBox[{"h00", "[", RowBox[{"t", ",", "r"}], "]"}], "2"], " ", RowBox[{"LX", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], "-", RowBox[{ FractionBox["1", "8"], " ", "\[Kappa]", " ", RowBox[{"A", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{"h00", "[", RowBox[{"t", ",", "r"}], "]"}], "2"], " ", RowBox[{"LX", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}]}]], "Output", CellChangeTimes->{ 3.848217190765051*^9, 3.8482172780453053`*^9, {3.8482173285751266`*^9, 3.8482173378028173`*^9}, {3.848217374189365*^9, 3.848217401130124*^9}, 3.848217674189499*^9, {3.848217731428677*^9, 3.848217752702443*^9}, { 3.848217851123131*^9, 3.848217884513137*^9}, {3.8482179259645243`*^9, 3.84821793881358*^9}, 3.8482186252288523`*^9}, CellLabel-> "Out[670]=",ExpressionUUID->"bb2aef12-5b85-418e-83ff-383f3948b1cc"], Cell[BoxData["0"], "Output", CellChangeTimes->{ 3.848217190765051*^9, 3.8482172780453053`*^9, {3.8482173285751266`*^9, 3.8482173378028173`*^9}, {3.848217374189365*^9, 3.848217401130124*^9}, 3.848217674189499*^9, {3.848217731428677*^9, 3.848217752702443*^9}, { 3.848217851123131*^9, 3.848217884513137*^9}, {3.8482179259645243`*^9, 3.84821793881358*^9}, 3.848218625232305*^9}, CellLabel-> "Out[671]=",ExpressionUUID->"6f27c1d1-fee5-4e54-92cd-315aadeaac95"] }, Open ]], Cell[TextData[{ StyleBox["Thus finally the h00 terms are", FontColor->RGBColor[1, 0, 0]], " \n", Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["h00", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", RowBox[{"LX", "[", "r", "]"}], " ", RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["h00", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}]}]], CellChangeTimes->{3.848216973005002*^9, 3.848217550644414*^9, 3.8482176708034563`*^9},ExpressionUUID-> "b29bf809-199e-4eb4-9603-71b23e530169"] }], "Text", CellFrame->{{0.5, 3}, {3, 0.5}}, CellFrameColor->RGBColor[1, 0, 0], CellChangeTimes->{{3.848217973832711*^9, 3.848218000825056*^9}, { 3.848218628109356*^9, 3.8482186287854757`*^9}, 3.848219315918528*^9}, Background->GrayLevel[ 0.85],ExpressionUUID->"41b51b87-52a1-4f95-ba58-588b476c4173"] }, Open ]], Cell[CellGroupData[{ Cell["3.4 The simplification of \[CapitalPhi] terms", "Subsection", CellChangeTimes->{{3.84820743617896*^9, 3.848207447550709*^9}, { 3.848218130702364*^9, 3.848218134888555*^9}, 3.848220187555872*^9},ExpressionUUID->"5e81776e-c7e1-4eab-ad92-\ de65d0d40602"], Cell[TextData[StyleBox["We first transfer all the time derivatives on {hrr, \ h00, \[Delta]\[Phi]} to \[CapitalPhi],", FontColor->RGBColor[0, 0, 1]]], "Text", CellChangeTimes->{{3.8482188244718943`*^9, 3.84821895470955*^9}},ExpressionUUID->"b16b2209-2d09-402e-8cb9-\ 1f940385b43b"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"L\[CapitalPhi]", "=", RowBox[{"\[CapitalPhi]Terms", "//", "Expand"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Lhrrdt", "=", " ", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["hrr", TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], RowBox[{"(", RowBox[{ SubscriptBox["\[PartialD]", RowBox[{" ", RowBox[{ SuperscriptBox["hrr", TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}]], "L\[CapitalPhi]"}], ")"}]}], "//", "Expand"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Lh00dt", "=", " ", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["h00", TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], RowBox[{"(", RowBox[{ SubscriptBox["\[PartialD]", RowBox[{" ", RowBox[{ SuperscriptBox["h00", TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}]], "L\[CapitalPhi]"}], ")"}]}], "//", "Expand"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"L\[Delta]\[Phi]dt", "=", " ", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["\[Delta]\[Phi]", TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], RowBox[{"(", RowBox[{ SubscriptBox["\[PartialD]", RowBox[{" ", RowBox[{ SuperscriptBox["\[Delta]\[Phi]", TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}]], "L\[CapitalPhi]"}], ")"}]}], "//", "Expand"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"L\[CapitalPhi]Left", "=", RowBox[{ RowBox[{ "L\[CapitalPhi]", "-", "Lhrrdt", "-", "Lh00dt", "-", "L\[Delta]\[Phi]dt"}], "//", "Expand"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"L\[CapitalPhi]New", "=", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}]}], RowBox[{ SubscriptBox["\[PartialD]", "t"], FractionBox["Lhrrdt", RowBox[{ SuperscriptBox["hrr", TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]]}]}], "-", RowBox[{ RowBox[{"h00", "[", RowBox[{"t", ",", "r"}], "]"}], RowBox[{ SubscriptBox["\[PartialD]", "t"], FractionBox["Lh00dt", RowBox[{ SuperscriptBox["h00", TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]]}]}], "-", RowBox[{ RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], RowBox[{ SubscriptBox["\[PartialD]", "t"], FractionBox["L\[Delta]\[Phi]dt", RowBox[{ SuperscriptBox["\[Delta]\[Phi]", TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]]}]}], "+", "L\[CapitalPhi]Left"}], "/.", "rep"}], "//", "Expand"}]}]}], "Input", CellFrame->0.5, CellChangeTimes->{{3.846817835888171*^9, 3.846817943539504*^9}, { 3.846817976525093*^9, 3.8468180315787077`*^9}, {3.8468180884432077`*^9, 3.846818128909683*^9}, {3.846818333231174*^9, 3.84681836853762*^9}, { 3.846818411890894*^9, 3.846818471265218*^9}, 3.846818516834066*^9, 3.846818649885943*^9, {3.846818818974555*^9, 3.846818841478787*^9}, 3.8469205618968515`*^9, 3.848207234107609*^9, 3.848207264763617*^9, { 3.8482148951255913`*^9, 3.8482149273175983`*^9}, {3.8482151173296223`*^9, 3.848215151821725*^9}, 3.848215199545945*^9, {3.848218181732582*^9, 3.8482182339387407`*^9}, {3.848218271464559*^9, 3.8482183402290897`*^9}, { 3.848218382348835*^9, 3.848218505673863*^9}, {3.848218639371745*^9, 3.848218643371684*^9}, {3.848218721534522*^9, 3.8482187698854933`*^9}}, Background->GrayLevel[0.85], CellLabel-> "In[690]:=",ExpressionUUID->"bb0878cd-6f17-4ab6-952d-e724c03c8220"], Cell[BoxData[ RowBox[{ RowBox[{"2", " ", SuperscriptBox[ RowBox[{"\[CapitalPhi]", "[", RowBox[{"t", ",", "r"}], "]"}], "2"], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], "+", RowBox[{"2", " ", RowBox[{"A", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{"\[CapitalPhi]", "[", RowBox[{"t", ",", "r"}], "]"}], "2"], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", RowBox[{"A", "[", "r", "]"}], " ", RowBox[{"LX", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{"\[CapitalPhi]", "[", RowBox[{"t", ",", "r"}], "]"}], "2"], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], "+", RowBox[{"4", " ", RowBox[{"A", "[", "r", "]"}], " ", RowBox[{"\[CapitalPhi]", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[CapitalPhi]", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}], "+", RowBox[{"\[Kappa]", " ", RowBox[{"LX", "[", "r", "]"}], " ", RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[CapitalPhi]", TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}], "+", RowBox[{"2", " ", RowBox[{"A", "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["hrr", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["\[CapitalPhi]", TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}], "+", RowBox[{"2", " ", RowBox[{"A", "[", "r", "]"}], " ", RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["\[CapitalPhi]", TagBox[ RowBox[{"(", RowBox[{"1", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}]}]], "Output", CellChangeTimes->{ 3.848208818761889*^9, 3.8482149284312143`*^9, 3.848215323956345*^9, 3.848218200046947*^9, 3.848218234600712*^9, 3.848218297844717*^9, { 3.848218334515625*^9, 3.8482183407870617`*^9}, {3.848218389415002*^9, 3.848218409272196*^9}, 3.84821843996557*^9, 3.8482186439301167`*^9, { 3.8482187297766953`*^9, 3.848218770913389*^9}}, CellLabel-> "Out[695]=",ExpressionUUID->"691533b0-997c-4c70-a99a-81e139b12b7a"] }, Open ]], Cell[TextData[StyleBox["Then we transfer the spatial derivative of \ \[CapitalPhi] to {hrr, h00, \[Delta]\[Phi]}.", FontColor->RGBColor[0, 0, 1]]], "Text", CellChangeTimes->{{3.8482188244718943`*^9, 3.848218913214757*^9}, { 3.848218960855991*^9, 3.848218964901676*^9}},ExpressionUUID->"e0ce7fb4-d2c0-43e8-bf84-\ 5fb9ddf716b9"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"\[CapitalPhi]dtdr", "=", RowBox[{ RowBox[{"L\[CapitalPhi]New", "-", RowBox[{"(", RowBox[{"L\[CapitalPhi]New", "/.", RowBox[{"{", RowBox[{ RowBox[{ SuperscriptBox["\[CapitalPhi]", TagBox[ RowBox[{"(", RowBox[{"1", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", "0"}], "}"}]}], ")"}]}], "//", "Expand"}]}], "\[IndentingNewLine]", RowBox[{"\[CapitalPhi]dr", "=", RowBox[{ RowBox[{"L\[CapitalPhi]New", "-", RowBox[{"(", RowBox[{"L\[CapitalPhi]New", "/.", RowBox[{"{", RowBox[{ RowBox[{ SuperscriptBox["\[CapitalPhi]", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", "0"}], "}"}]}], ")"}]}], "//", "Expand"}]}], "\[IndentingNewLine]", RowBox[{"OtherTerms", "=", RowBox[{ RowBox[{ "L\[CapitalPhi]New", "-", "\[CapitalPhi]dtdr", "-", "\[CapitalPhi]dr"}], "//", "Expand"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", RowBox[{ SuperscriptBox["\[CapitalPhi]", TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}], RowBox[{ SubscriptBox["\[PartialD]", "r"], FractionBox["\[CapitalPhi]dtdr", RowBox[{ SuperscriptBox["\[CapitalPhi]", TagBox[ RowBox[{"(", RowBox[{"1", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]]}]}], "-", RowBox[{ FractionBox["1", "2"], SuperscriptBox[ RowBox[{"\[CapitalPhi]", "[", RowBox[{"t", ",", "r"}], "]"}], "2"], RowBox[{ SubscriptBox["\[PartialD]", "r"], FractionBox["\[CapitalPhi]dr", RowBox[{ RowBox[{ SuperscriptBox["\[CapitalPhi]", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], RowBox[{"\[CapitalPhi]", "[", RowBox[{"t", ",", "r"}], "]"}]}]]}]}], "+", "OtherTerms"}], "/.", "rep"}], "//", "Expand"}]}], "Input", CellFrame->0.5, CellChangeTimes->{{3.846817835888171*^9, 3.846817943539504*^9}, { 3.846817976525093*^9, 3.8468180315787077`*^9}, {3.8468180884432077`*^9, 3.846818128909683*^9}, {3.846818333231174*^9, 3.84681836853762*^9}, { 3.846818411890894*^9, 3.846818471265218*^9}, 3.846818516834066*^9, 3.846818649885943*^9, {3.846818818974555*^9, 3.846818841478787*^9}, 3.8469205618968515`*^9, 3.848207234107609*^9, 3.848207264763617*^9, { 3.8482148951255913`*^9, 3.8482149273175983`*^9}, {3.8482151173296223`*^9, 3.848215151821725*^9}, 3.848215199545945*^9, {3.848218181732582*^9, 3.8482182339387407`*^9}, {3.848218271464559*^9, 3.8482183402290897`*^9}, { 3.848218382348835*^9, 3.848218505673863*^9}, {3.848218639371745*^9, 3.848218643371684*^9}, {3.848218721534522*^9, 3.8482187698854933`*^9}, { 3.848219059761139*^9, 3.848219159724423*^9}, {3.848219190682836*^9, 3.848219284449647*^9}}, Background->GrayLevel[0.85], CellLabel-> "In[713]:=",ExpressionUUID->"10cf6049-52ee-4dfa-a638-39333348daba"], Cell[BoxData[ RowBox[{"2", " ", RowBox[{"A", "[", "r", "]"}], " ", RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["\[CapitalPhi]", TagBox[ RowBox[{"(", RowBox[{"1", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}]], "Output", CellChangeTimes->{{3.848219102384789*^9, 3.848219126692274*^9}, 3.848219160270898*^9, {3.8482192322597*^9, 3.848219285561709*^9}}, CellLabel-> "Out[713]=",ExpressionUUID->"efd12725-6413-45b5-a5b2-3d95f796dd73"], Cell[BoxData[ RowBox[{"4", " ", RowBox[{"A", "[", "r", "]"}], " ", RowBox[{"\[CapitalPhi]", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[CapitalPhi]", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}]], "Output", CellChangeTimes->{{3.848219102384789*^9, 3.848219126692274*^9}, 3.848219160270898*^9, {3.8482192322597*^9, 3.84821928556518*^9}}, CellLabel-> "Out[714]=",ExpressionUUID->"7bd94b83-509e-4de3-a191-644d23c6a96a"], Cell[BoxData[ RowBox[{ RowBox[{"2", " ", SuperscriptBox[ RowBox[{"\[CapitalPhi]", "[", RowBox[{"t", ",", "r"}], "]"}], "2"], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], "+", RowBox[{"2", " ", RowBox[{"A", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{"\[CapitalPhi]", "[", RowBox[{"t", ",", "r"}], "]"}], "2"], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], "-", RowBox[{ FractionBox["1", "2"], " ", "\[Kappa]", " ", RowBox[{"A", "[", "r", "]"}], " ", RowBox[{"LX", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{"\[CapitalPhi]", "[", RowBox[{"t", ",", "r"}], "]"}], "2"], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], "+", RowBox[{"\[Kappa]", " ", RowBox[{"LX", "[", "r", "]"}], " ", RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[CapitalPhi]", TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}], "+", RowBox[{"2", " ", RowBox[{"A", "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["hrr", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["\[CapitalPhi]", TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}]}]], "Output", CellChangeTimes->{{3.848219102384789*^9, 3.848219126692274*^9}, 3.848219160270898*^9, {3.8482192322597*^9, 3.848219285569421*^9}}, CellLabel-> "Out[715]=",ExpressionUUID->"51547ab0-9a23-4143-a553-22c6faa2557d"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[CapitalPhi]", TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}], "+", RowBox[{"\[Kappa]", " ", RowBox[{"LX", "[", "r", "]"}], " ", RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[CapitalPhi]", TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}]}]], "Output", CellChangeTimes->{{3.848219102384789*^9, 3.848219126692274*^9}, 3.848219160270898*^9, {3.8482192322597*^9, 3.8482192855755663`*^9}}, CellLabel-> "Out[716]=",ExpressionUUID->"8b84feec-9a51-4e0a-a502-1c504c516d65"] }, Open ]], Cell[TextData[{ StyleBox["Finally the \[CapitalPhi] terms are", FontColor->RGBColor[1, 0, 0]], " \n", Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[CapitalPhi]", TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}], "+", RowBox[{"\[Kappa]", " ", RowBox[{"LX", "[", "r", "]"}], " ", RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[CapitalPhi]", TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}]}]], CellChangeTimes->{3.848216973005002*^9, 3.848217550644414*^9, 3.8482176708034563`*^9},ExpressionUUID-> "5c1f985f-f0a6-4eac-ae59-274689df6643"] }], "Text", CellFrame->{{0.5, 3}, {3, 0.5}}, CellFrameColor->RGBColor[1, 0, 0], CellChangeTimes->{{3.848217973832711*^9, 3.848218000825056*^9}, { 3.848218628109356*^9, 3.8482186287854757`*^9}, {3.848219306008656*^9, 3.848219324316039*^9}}, Background->GrayLevel[ 0.85],ExpressionUUID->"a4c075c7-4d95-4a39-85fd-ff21929fbc36"], Cell[TextData[{ StyleBox[" If we define \[CapitalXi] = 2", FontColor->RGBColor[1, 0, 0]], Cell[BoxData[ SuperscriptBox["\[CapitalPhi]", TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None]], CellChangeTimes->{{3.848219102384789*^9, 3.848219126692274*^9}, 3.848219160270898*^9, {3.8482192322597*^9, 3.8482192855755663`*^9}}, FontColor->RGBColor[1, 0, 0],ExpressionUUID-> "2a5685d5-eeeb-423b-8367-8c0445678f33"], StyleBox["-", FontColor->RGBColor[1, 0, 0]], Cell[BoxData[ SuperscriptBox["h00", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None]], CellChangeTimes->{3.848216973005002*^9, 3.848217550644414*^9, 3.848217670799419*^9, 3.848218588428906*^9, 3.848218622734152*^9}, FontColor->RGBColor[1, 0, 0],ExpressionUUID-> "ea8a6013-0ccb-4b7f-b5dd-abef11d77941"], StyleBox[" , then the combination of h00 and \[CapitalPhi] terms are", FontColor->RGBColor[1, 0, 0]], "\n(", Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{ FractionBox["1", "2"], "\[Kappa]", " ", RowBox[{"LX", "[", "r", "]"}], " ", RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], "-", " ", RowBox[{ RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}]}], ")"}], " ", RowBox[{"\[CapitalXi]", "[", RowBox[{"t", ",", "r"}], "]"}]}]], CellChangeTimes->{3.848216973005002*^9, 3.848217550644414*^9, 3.8482176708034563`*^9},ExpressionUUID-> "e4c12442-2633-4a3e-8dc0-6650f658dbb4"], "\n", StyleBox["which gives us a constraint equation:", FontColor->RGBColor[1, 0, 0]], "\n", Cell[BoxData[ RowBox[{ RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}]], CellChangeTimes->{3.848216973005002*^9, 3.848217550644414*^9, 3.8482176708034563`*^9},ExpressionUUID-> "a8216189-1dd2-4d05-93f5-be79ce5e97d6"], "= ", Cell[BoxData[ RowBox[{ FractionBox["1", "2"], "\[Kappa]", " ", RowBox[{"LX", "[", "r", "]"}], " ", RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " "}]],ExpressionUUID-> "b51cff4a-d310-4d5e-b240-4caf6fe73fdc"] }], "Text", CellFrame->{{0.5, 3}, {3, 0.5}}, CellFrameColor->RGBColor[1, 0, 0], CellChangeTimes->{{3.848217973832711*^9, 3.848218000825056*^9}, { 3.848218628109356*^9, 3.8482186287854757`*^9}, {3.848219306008656*^9, 3.848219324316039*^9}, {3.8482195189259377`*^9, 3.84821954903058*^9}, { 3.848219579047426*^9, 3.848219707995593*^9}, {3.848221692310882*^9, 3.848221742555637*^9}}, Background->GrayLevel[ 0.85],ExpressionUUID->"62d39f80-40e3-4aa9-9471-dfe1230b319a"] }, Open ]], Cell[CellGroupData[{ Cell["3.5 The simplification of hrr terms", "Subsection", CellChangeTimes->{{3.84820743617896*^9, 3.848207447550709*^9}, { 3.848218130702364*^9, 3.848218134888555*^9}, {3.848219743318697*^9, 3.84821974397316*^9}, {3.8482201931092997`*^9, 3.84822019511299*^9}},ExpressionUUID->"267695a6-ac38-451c-9baf-\ 729cb97b1f20"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"Solve", "[", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["A", "\[Prime]\[Prime]", MultilineFunction->None], "[", "r", "]"}], "==", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"4", " ", SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], "-", RowBox[{"\[Kappa]", " ", RowBox[{"LX", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}]}], ")"}]}]}], ",", "\[Kappa]"}], "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Solve", "[", RowBox[{ RowBox[{ RowBox[{"X", "[", "r", "]"}], "==", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "2"}], " ", RowBox[{"A", "[", "r", "]"}]}]], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}]}], ",", RowBox[{"A", "[", "r", "]"}]}], "]"}], "/.", RowBox[{"{", RowBox[{ TemplateBox[{"1"}, "C"], "\[Rule]", " ", "0"}], "}"}]}]}], "Input", CellChangeTimes->{{3.848220506342778*^9, 3.848220516785619*^9}, { 3.848220550556881*^9, 3.848220600073494*^9}}, CellLabel-> "In[727]:=",ExpressionUUID->"b8bb11b9-3ec7-4310-8f77-b5ffad686401"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{"\[Kappa]", "\[Rule]", FractionBox[ RowBox[{"4", " ", RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"], "-", RowBox[{ SuperscriptBox["A", "\[Prime]\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], ")"}]}], RowBox[{ RowBox[{"LX", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}]]}], "}"}], "}"}]], "Output", CellChangeTimes->{ 3.848220517201817*^9, {3.8482205534887133`*^9, 3.8482206006305513`*^9}}, CellLabel-> "Out[727]=",ExpressionUUID->"038d10fc-ae84-49c1-bdbd-d3805e86e04c"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"A", "[", "r", "]"}], "\[Rule]", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"Log", "[", RowBox[{"-", FractionBox[ SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"], RowBox[{"2", " ", RowBox[{"X", "[", "r", "]"}]}]]}], "]"}]}]}], "}"}], "}"}]], "Output",\ CellChangeTimes->{ 3.848220517201817*^9, {3.8482205534887133`*^9, 3.848220600634651*^9}}, CellLabel-> "Out[728]=",ExpressionUUID->"688488dc-5f15-415d-9921-01904f658590"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"Lhrr", "=", RowBox[{ RowBox[{ RowBox[{"hrrTerms", "/.", RowBox[{"{", RowBox[{ RowBox[{"\[Kappa]", "\[Rule]", FractionBox[ RowBox[{"4", " ", RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"], "-", RowBox[{ SuperscriptBox["A", "\[Prime]\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], ")"}]}], RowBox[{ RowBox[{"LX", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}]]}], ",", RowBox[{ RowBox[{"A", "[", "r", "]"}], "\[Rule]", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"Log", "[", RowBox[{"-", FractionBox[ SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"], RowBox[{"2", " ", RowBox[{"X", "[", "r", "]"}]}]]}], "]"}]}]}]}], "}"}]}], "/.", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"LXX", "[", "r", "]"}], "\[Rule]", FractionBox[ RowBox[{ RowBox[{"LX", "[", "r", "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"\[Gamma]", "[", "r", "]"}]}], ")"}]}], RowBox[{"2", " ", RowBox[{"X", "[", "r", "]"}]}]]}], ",", RowBox[{ RowBox[{"LX\[Phi]", "[", "r", "]"}], "\[Rule]", RowBox[{ FractionBox[ RowBox[{ SuperscriptBox["LX", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]], "+", FractionBox[ RowBox[{ RowBox[{"LX", "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], RowBox[{"2", " ", RowBox[{"X", "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}]], "-", FractionBox[ RowBox[{ RowBox[{"LX", "[", "r", "]"}], " ", RowBox[{"\[Gamma]", "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], RowBox[{"2", " ", RowBox[{"X", "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}]]}]}]}], "}"}]}], "//", "Expand"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"hrrdtdt", "=", RowBox[{ RowBox[{"Lhrr", "-", RowBox[{"(", RowBox[{"Lhrr", "/.", RowBox[{"{", RowBox[{ RowBox[{ SuperscriptBox["hrr", TagBox[ RowBox[{"(", RowBox[{"2", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", "0"}], "}"}]}], ")"}]}], "//", "Expand"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"hrrdtSqr", "=", RowBox[{ RowBox[{"Lhrr", "-", RowBox[{"(", RowBox[{"Lhrr", "/.", RowBox[{"{", RowBox[{ RowBox[{ SuperscriptBox["hrr", TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", "0"}], "}"}]}], ")"}]}], "//", "Expand"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"hrrdr", "=", RowBox[{ RowBox[{"Lhrr", "-", RowBox[{"(", RowBox[{"Lhrr", "/.", RowBox[{"{", RowBox[{ RowBox[{ SuperscriptBox["hrr", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", "0"}], "}"}]}], ")"}]}], "//", "Expand"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"hrrOther", "=", RowBox[{ RowBox[{"Lhrr", "-", "hrrdtdt", "-", "hrrdtSqr", "-", "hrrdr"}], "//", "Expand"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"LhrrNew", "=", RowBox[{ RowBox[{ RowBox[{"hrrdtdt", "-", RowBox[{ RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], RowBox[{ SubscriptBox["\[PartialD]", "t"], FractionBox["hrrdtSqr", RowBox[{ SuperscriptBox["hrr", TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]]}]}], "-", RowBox[{ FractionBox["1", "2"], SuperscriptBox[ RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], "2"], RowBox[{ SubscriptBox["\[PartialD]", "r"], FractionBox["hrrdr", RowBox[{ RowBox[{ SuperscriptBox["hrr", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}]}]]}]}], "+", "hrrOther"}], "/.", RowBox[{"{", RowBox[{ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]\[Prime]", MultilineFunction->None], "[", "r", "]"}], "\[Rule]", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], "+", FractionBox[ RowBox[{ RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], RowBox[{"2", " ", RowBox[{"X", "[", "r", "]"}]}]]}]}], "}"}]}], "//", "Expand"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"LrrFinal", "=", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"\[Gamma]", "[", "r", "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox["A", "\[Prime]\[Prime]", MultilineFunction->None], "[", "r", "]"}], "-", SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], ")"}], SuperscriptBox[ RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], "2"]}], " ", "+", RowBox[{ FractionBox["1", "2"], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"], SuperscriptBox[ RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], "2"]}], " ", "+", RowBox[{"2", " ", RowBox[{"\[Gamma]", "[", "r", "]"}], " ", RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"], "-", RowBox[{ SuperscriptBox["A", "\[Prime]\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], ")"}], FractionBox[ RowBox[{" ", RowBox[{ SuperscriptBox["\[Delta]\[Phi]", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}], RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]], RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}]}], "+", RowBox[{"2", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], "+", RowBox[{ SuperscriptBox["A", "\[Prime]\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], ")"}], FractionBox[ RowBox[{" ", RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], " "}], RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]], RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}]}], "+", RowBox[{ RowBox[{"\[Gamma]", "[", "r", "]"}], RowBox[{"(", RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], "+", RowBox[{ SuperscriptBox["A", "\[Prime]\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], ")"}], FractionBox[ RowBox[{" ", RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " "}], RowBox[{ RowBox[{"X", "[", "r", "]"}], " "}]], FractionBox[ RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]], " ", RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}]}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"LrrFinal", "-", "LhrrNew"}], "//", "Expand"}]}], "Input", CellFrame->0.5, CellChangeTimes->{{3.848220230569875*^9, 3.848220247282542*^9}, 3.848220420522153*^9, {3.848220525023097*^9, 3.848220525441586*^9}, { 3.848220610786234*^9, 3.848220637520849*^9}, {3.848220689942853*^9, 3.848220871964671*^9}, {3.848220910283018*^9, 3.8482209106489153`*^9}, { 3.848220954301062*^9, 3.8482211053843737`*^9}, {3.848221241243826*^9, 3.848221244955597*^9}, {3.848221497862483*^9, 3.848221554470883*^9}, { 3.8482221745625134`*^9, 3.848222200529482*^9}}, Background->GrayLevel[ 0.85],ExpressionUUID->"80f05479-eba1-4a8f-bd6b-15298a641fe0"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], "2"]}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], "-", RowBox[{ FractionBox["1", "2"], " ", SuperscriptBox[ RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], "2"], " ", RowBox[{"\[Gamma]", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], "-", FractionBox[ RowBox[{"2", " ", RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "3"]}], RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]], "-", FractionBox[ RowBox[{ RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{"\[Gamma]", "[", "r", "]"}], " ", RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"], " ", RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], RowBox[{ RowBox[{"X", "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}]], "-", RowBox[{ FractionBox["3", "4"], " ", SuperscriptBox[ RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], "2"], " ", RowBox[{"Log", "[", RowBox[{"-", FractionBox[ SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"], RowBox[{"2", " ", RowBox[{"X", "[", "r", "]"}]}]]}], "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], "+", RowBox[{ FractionBox["1", "2"], " ", SuperscriptBox[ RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], "2"], " ", RowBox[{"\[Gamma]", "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], "+", FractionBox[ RowBox[{"2", " ", RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]], "+", FractionBox[ RowBox[{ RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{"\[Gamma]", "[", "r", "]"}], " ", RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], RowBox[{ RowBox[{"X", "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}]], "-", RowBox[{ FractionBox["3", "2"], " ", RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{"Log", "[", RowBox[{"-", FractionBox[ SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"], RowBox[{"2", " ", RowBox[{"X", "[", "r", "]"}]}]]}], "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["hrr", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}], "+", FractionBox[ RowBox[{"2", " ", RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{"\[Gamma]", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"], " ", RowBox[{ SuperscriptBox["\[Delta]\[Phi]", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}], RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]], "-", FractionBox[ RowBox[{"2", " ", RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{"\[Gamma]", "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[Delta]\[Phi]", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}], RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]], "-", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"Log", "[", RowBox[{"-", FractionBox[ SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"], RowBox[{"2", " ", RowBox[{"X", "[", "r", "]"}]}]]}], "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["hrr", TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "2"]}], "-", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{"Log", "[", RowBox[{"-", FractionBox[ SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"], RowBox[{"2", " ", RowBox[{"X", "[", "r", "]"}]}]]}], "]"}], " ", RowBox[{ SuperscriptBox["hrr", TagBox[ RowBox[{"(", RowBox[{"2", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}]}]], "Output", CellChangeTimes->{{3.848220233796686*^9, 3.8482202477350283`*^9}, 3.848220421023941*^9, 3.848220525938985*^9, {3.8482206115764103`*^9, 3.848220639003454*^9}, 3.84822072667413*^9, {3.8482207616947412`*^9, 3.848220790529521*^9}, 3.8482208233476887`*^9, {3.848220854279203*^9, 3.848220873135166*^9}, 3.848220912074972*^9, {3.848221050270727*^9, 3.8482211064174557`*^9}, 3.848221245789905*^9, 3.8482215167832603`*^9, 3.848221551120281*^9, 3.848221822239277*^9, 3.8482221753629704`*^9}, CellLabel-> "Out[814]=",ExpressionUUID->"1014852e-27ee-4dc5-9c26-3aa8de3a7479"], Cell[BoxData["0"], "Output", CellChangeTimes->{{3.848220233796686*^9, 3.8482202477350283`*^9}, 3.848220421023941*^9, 3.848220525938985*^9, {3.8482206115764103`*^9, 3.848220639003454*^9}, 3.84822072667413*^9, {3.8482207616947412`*^9, 3.848220790529521*^9}, 3.8482208233476887`*^9, {3.848220854279203*^9, 3.848220873135166*^9}, 3.848220912074972*^9, {3.848221050270727*^9, 3.8482211064174557`*^9}, 3.848221245789905*^9, 3.8482215167832603`*^9, 3.848221551120281*^9, 3.848221822239277*^9, 3.848222175372945*^9}, CellLabel-> "Out[821]=",ExpressionUUID->"e47d885a-031b-4d79-9b72-a314b2aa8c46"] }, Open ]], Cell[TextData[{ StyleBox["Finally the hrr terms are", FontColor->RGBColor[1, 0, 0]], " \n", Cell[BoxData[ RowBox[{"LrrFinal", "=", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"\[Gamma]", "[", "r", "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox["A", "\[Prime]\[Prime]", MultilineFunction->None], "[", "r", "]"}], "-", SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], ")"}], SuperscriptBox[ RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], "2"]}], " ", "+", RowBox[{ FractionBox["1", "2"], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"], SuperscriptBox[ RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], "2"]}], " ", "+", RowBox[{"2", " ", RowBox[{"\[Gamma]", "[", "r", "]"}], " ", RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"], "-", RowBox[{ SuperscriptBox["A", "\[Prime]\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], ")"}], FractionBox[ RowBox[{" ", RowBox[{ SuperscriptBox["\[Delta]\[Phi]", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}], RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]], RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}]}], "+", RowBox[{"2", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox["A", "\[Prime]\[Prime]", MultilineFunction->None], "[", "r", "]"}], "-", SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], ")"}], FractionBox[ RowBox[{" ", RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], " "}], RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]], RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}]}], "+", RowBox[{ RowBox[{"\[Gamma]", "[", "r", "]"}], RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox["A", "\[Prime]\[Prime]", MultilineFunction->None], "[", "r", "]"}], "-", SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], ")"}], FractionBox[ RowBox[{" ", RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " "}], RowBox[{ RowBox[{"X", "[", "r", "]"}], " "}]], FractionBox[ RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]], " ", RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}]}]}]}]], CellChangeTimes->{{3.848220230569875*^9, 3.848220247282542*^9}, 3.848220420522153*^9, {3.848220525023097*^9, 3.848220525441586*^9}, { 3.848220610786234*^9, 3.848220637520849*^9}, {3.848220689942853*^9, 3.848220871964671*^9}, {3.848220910283018*^9, 3.8482209106489153`*^9}, { 3.848220954301062*^9, 3.8482211053843737`*^9}, {3.848221241243826*^9, 3.848221244955597*^9}, {3.848221497862483*^9, 3.848221554470883*^9}}, ExpressionUUID->"b523018a-dbf2-4069-aca1-4d51fa5520b5"] }], "Text", CellFrame->{{0.5, 3}, {3, 0.5}}, CellFrameColor->RGBColor[1, 0, 0], CellChangeTimes->{{3.848217973832711*^9, 3.848218000825056*^9}, { 3.848218628109356*^9, 3.8482186287854757`*^9}, {3.848219306008656*^9, 3.848219324316039*^9}, {3.848221586902548*^9, 3.848221614006402*^9}}, Background->GrayLevel[ 0.85],ExpressionUUID->"779ceba9-df8d-4783-aeb4-8ea427796e87"] }, Open ]], Cell[CellGroupData[{ Cell["3.6 The simplification of \[Delta]\[Phi] terms", "Subsection", CellChangeTimes->{{3.84820743617896*^9, 3.848207447550709*^9}, { 3.848218130702364*^9, 3.848218134888555*^9}, {3.848219743318697*^9, 3.84821974397316*^9}, {3.8482201931092997`*^9, 3.84822019511299*^9}, { 3.848221860534774*^9, 3.8482218692930393`*^9}},ExpressionUUID->"e296d98d-34f2-433b-8a56-\ ed993d47d732"], Cell[TextData[{ StyleBox["In fact, there is no need to simplify hrr and \[Delta]\[Phi] \ independently, once we obtained the constraint equation", FontColor->RGBColor[0, 0, 1]], "\n", Cell[BoxData[ RowBox[{ RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}]], CellChangeTimes->{3.848216973005002*^9, 3.848217550644414*^9, 3.8482176708034563`*^9},ExpressionUUID-> "6bc61687-2c39-4794-a017-2aa73aa9653e"], "= ", Cell[BoxData[ RowBox[{ FractionBox["1", "2"], "\[Kappa]", " ", RowBox[{"LX", "[", "r", "]"}], " ", RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " "}]],ExpressionUUID-> "f4b30054-0ae1-4104-a1f1-88070fcef4d4"], "\n", StyleBox["Using this equation, we can eliminate hrr in terms of \[Delta]\ \[Phi], then we obtain the quadratic action of \[Delta]\[Phi].", FontColor->RGBColor[0, 0, 1]] }], "Text", CellChangeTimes->{{3.8482223330521793`*^9, 3.848222390476737*^9}, { 3.84822269185633*^9, 3.848222725229228*^9}, {3.848223023281529*^9, 3.848223045240769*^9}},ExpressionUUID->"ea16d7d6-0372-48ff-983d-\ 56defd21c0a5"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["4. The quadratic action of \[Delta]\[Phi]", "Section", CellChangeTimes->{{3.848206195488043*^9, 3.848206210621422*^9}, 3.848220197029739*^9, {3.848222425201578*^9, 3.848222428391451*^9}, { 3.8482227411654043`*^9, 3.8482227534304867`*^9}},ExpressionUUID->"27d274cf-1ed5-4637-b5d7-\ d0e5e2c2397c"], Cell[TextData[{ StyleBox["The elimination of hrr is realized by introducing the following \ replacement: ", FontColor->RGBColor[0, 0, 1]], Cell[BoxData[ RowBox[{"/.", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["hrr", TagBox[ RowBox[{"(", RowBox[{"2", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"t", ",", "t"}]], FractionBox[ RowBox[{"\[Kappa]", " ", RowBox[{"LX", "[", "r", "]"}], " ", RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], RowBox[{"2", " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}]]}]}], ",", RowBox[{ RowBox[{ SuperscriptBox["hrr", TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", RowBox[{ SubscriptBox["\[PartialD]", "t"], FractionBox[ RowBox[{"\[Kappa]", " ", RowBox[{"LX", "[", "r", "]"}], " ", RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], RowBox[{"2", " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}]]}]}], ",", RowBox[{ RowBox[{ SuperscriptBox["hrr", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", RowBox[{ SubscriptBox["\[PartialD]", "r"], FractionBox[ RowBox[{"\[Kappa]", " ", RowBox[{"LX", "[", "r", "]"}], " ", RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], RowBox[{"2", " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}]]}]}], ",", RowBox[{ RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", FractionBox[ RowBox[{"\[Kappa]", " ", RowBox[{"LX", "[", "r", "]"}], " ", RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], RowBox[{"2", " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}]]}]}], "}"}]}]], CellFrame->0.5, CellChangeTimes->{{3.846818932128243*^9, 3.846818997821312*^9}, { 3.846819058201022*^9, 3.846819226650543*^9}, {3.846819263120599*^9, 3.8468192635082293`*^9}, {3.8468193643264017`*^9, 3.846819380426311*^9}, { 3.846819442647607*^9, 3.846819520327512*^9}, {3.8468195674854927`*^9, 3.846819727923789*^9}, {3.846819909955574*^9, 3.8468199857433577`*^9}, { 3.846820043729349*^9, 3.846820084088758*^9}, 3.846920605150288*^9, 3.846920652557708*^9, {3.846920686631029*^9, 3.846920694263491*^9}, { 3.846920735817169*^9, 3.846920747952691*^9}, 3.846920798192305*^9, 3.848222976944281*^9, {3.848223108580517*^9, 3.848223239669607*^9}}, Background->GrayLevel[0.85],ExpressionUUID-> "d3f99f7f-3d44-48af-adba-f801e420be2f"] }], "Text", CellChangeTimes->{{3.848223276464245*^9, 3.848223335990654*^9}},ExpressionUUID->"3fa0bd38-3a7e-4ce2-b1da-\ 24833d99f37c"], Cell[BoxData[{ RowBox[{ RowBox[{"Ltot", "=", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"hrrTerms", "+", "\[Delta]\[Phi]Terms"}], "/.", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["hrr", TagBox[ RowBox[{"(", RowBox[{"2", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"t", ",", "t"}]], FractionBox[ RowBox[{"\[Kappa]", " ", RowBox[{"LX", "[", "r", "]"}], " ", RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], RowBox[{"2", " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}]]}]}], ",", RowBox[{ RowBox[{ SuperscriptBox["hrr", TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", RowBox[{ SubscriptBox["\[PartialD]", "t"], FractionBox[ RowBox[{"\[Kappa]", " ", RowBox[{"LX", "[", "r", "]"}], " ", RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], RowBox[{"2", " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}]]}]}], ",", RowBox[{ RowBox[{ SuperscriptBox["hrr", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", RowBox[{ SubscriptBox["\[PartialD]", "r"], FractionBox[ RowBox[{"\[Kappa]", " ", RowBox[{"LX", "[", "r", "]"}], " ", RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], RowBox[{"2", " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}]]}]}], ",", RowBox[{ RowBox[{"hrr", "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", FractionBox[ RowBox[{"\[Kappa]", " ", RowBox[{"LX", "[", "r", "]"}], " ", RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], RowBox[{"2", " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}]]}]}], "}"}]}], "/.", RowBox[{"{", RowBox[{ RowBox[{"\[Kappa]", "\[Rule]", FractionBox[ RowBox[{"4", " ", RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"], "-", RowBox[{ SuperscriptBox["A", "\[Prime]\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], ")"}]}], RowBox[{ RowBox[{"LX", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}]]}], ",", RowBox[{ RowBox[{"A", "[", "r", "]"}], "\[Rule]", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"Log", "[", RowBox[{"-", FractionBox[ SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"], RowBox[{"2", " ", RowBox[{"X", "[", "r", "]"}]}]]}], "]"}]}]}]}], "}"}]}], "/.", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"LXX", "[", "r", "]"}], "\[Rule]", FractionBox[ RowBox[{ RowBox[{"LX", "[", "r", "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"\[Gamma]", "[", "r", "]"}]}], ")"}]}], RowBox[{"2", " ", RowBox[{"X", "[", "r", "]"}]}]]}], ",", RowBox[{ RowBox[{"LX\[Phi]", "[", "r", "]"}], "\[Rule]", RowBox[{ FractionBox[ RowBox[{ SuperscriptBox["LX", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]], "+", FractionBox[ RowBox[{ RowBox[{"LX", "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], RowBox[{"2", " ", RowBox[{"X", "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}]], "-", FractionBox[ RowBox[{ RowBox[{"LX", "[", "r", "]"}], " ", RowBox[{"\[Gamma]", "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], RowBox[{"2", " ", RowBox[{"X", "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}]]}]}]}], "}"}]}], "/.", "rep"}], "//", "Expand"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"L\[Delta]\[Phi]dr\[Delta]\[Phi]", "=", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["\[Delta]\[Phi]", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], RowBox[{ SubscriptBox["\[PartialD]", RowBox[{ RowBox[{ SuperscriptBox["\[Delta]\[Phi]", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], ",", RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}]}]], "Ltot"}]}], "//", "Expand"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"L\[Delta]\[Phi]dtdt", "=", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["\[Delta]\[Phi]", TagBox[ RowBox[{"(", RowBox[{"2", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], RowBox[{ SubscriptBox["\[PartialD]", RowBox[{ SuperscriptBox["\[Delta]\[Phi]", TagBox[ RowBox[{"(", RowBox[{"2", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]], "Ltot"}]}], "//", "Expand"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"L\[Delta]\[Phi]drSqr", "=", RowBox[{ RowBox[{ FractionBox["1", "2"], SuperscriptBox[ RowBox[{ SuperscriptBox["\[Delta]\[Phi]", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "2"], RowBox[{ SubscriptBox["\[PartialD]", RowBox[{ RowBox[{ SuperscriptBox["\[Delta]\[Phi]", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], ",", RowBox[{ SuperscriptBox["\[Delta]\[Phi]", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}]], "Ltot"}]}], "//", "Expand"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"L\[Delta]\[Phi]dtSqr", "=", RowBox[{ RowBox[{ FractionBox["1", "2"], SuperscriptBox[ RowBox[{ SuperscriptBox["\[Delta]\[Phi]", TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "2"], RowBox[{ SubscriptBox["\[PartialD]", RowBox[{ RowBox[{ SuperscriptBox["\[Delta]\[Phi]", TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], ",", RowBox[{ SuperscriptBox["\[Delta]\[Phi]", TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}]], "Ltot"}]}], "//", "Expand"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"L\[Delta]\[Phi]Sqr", "=", RowBox[{ RowBox[{ "Ltot", "-", "\[Delta]\[Phi]dr\[Delta]\[Phi]", "-", "\[Delta]\[Phi]dtdt", "-", "\[Delta]\[Phi]drSqr", "-", "\[Delta]\[Phi]dtSqr"}], "//", "Expand"}]}], ";"}]}], "Input", CellFrame->0.5, CellChangeTimes->{{3.846818932128243*^9, 3.846818997821312*^9}, { 3.846819058201022*^9, 3.846819226650543*^9}, {3.846819263120599*^9, 3.8468192635082293`*^9}, {3.8468193643264017`*^9, 3.846819380426311*^9}, { 3.846819442647607*^9, 3.846819520327512*^9}, {3.8468195674854927`*^9, 3.846819727923789*^9}, {3.846819909955574*^9, 3.8468199857433577`*^9}, { 3.846820043729349*^9, 3.846820084088758*^9}, 3.846920605150288*^9, 3.846920652557708*^9, {3.846920686631029*^9, 3.846920694263491*^9}, { 3.846920735817169*^9, 3.846920747952691*^9}, 3.846920798192305*^9, 3.848222976944281*^9, {3.848223108580517*^9, 3.848223239669607*^9}, 3.84822337513275*^9, {3.8482234208845997`*^9, 3.848223582122868*^9}, { 3.848223636945009*^9, 3.848223660855912*^9}, {3.848223695633306*^9, 3.848223709015233*^9}, {3.848225414401353*^9, 3.848225714485413*^9}, { 3.848225822514411*^9, 3.848225825697846*^9}, {3.8482258586149893`*^9, 3.848225864964569*^9}, {3.8482265268481007`*^9, 3.848226530613182*^9}}, Background->GrayLevel[0.85], CellLabel-> "In[1046]:=",ExpressionUUID->"1ad75477-1e91-4a6a-b41b-184d97e88690"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"LtotNew", "=", RowBox[{ RowBox[{"L\[Delta]\[Phi]Sqr", "+", "L\[Delta]\[Phi]dr\[Delta]\[Phi]", "-", RowBox[{ RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], RowBox[{ SubscriptBox["\[PartialD]", "r"], FractionBox["L\[Delta]\[Phi]drSqr", RowBox[{ SuperscriptBox["\[Delta]\[Phi]", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]]}]}], "-", RowBox[{ RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], RowBox[{ SubscriptBox["\[PartialD]", "t"], FractionBox["L\[Delta]\[Phi]dtSqr", RowBox[{ SuperscriptBox["\[Delta]\[Phi]", TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]]}]}], "+", "L\[Delta]\[Phi]dtdt"}], "//", "Expand"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"L\[Delta]\[Phi]SqrNew", "=", RowBox[{ RowBox[{ SuperscriptBox[ RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], "2"], FractionBox["1", "2"], RowBox[{ SubscriptBox["\[PartialD]", RowBox[{ RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], ",", RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}]}]], "LtotNew"}]}], "//", "Expand"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"L\[Delta]\[Phi]dr\[Delta]\[Phi]New", "=", RowBox[{ RowBox[{ RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["\[Delta]\[Phi]", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], RowBox[{ SubscriptBox["\[PartialD]", RowBox[{ RowBox[{ SuperscriptBox["\[Delta]\[Phi]", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], ",", RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}]}]], "LtotNew"}]}], "//", "Expand"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"L\[Delta]\[Phi]dtdtNew", "=", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["\[Delta]\[Phi]", TagBox[ RowBox[{"(", RowBox[{"2", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], RowBox[{ SubscriptBox["\[PartialD]", RowBox[{ SuperscriptBox["\[Delta]\[Phi]", TagBox[ RowBox[{"(", RowBox[{"2", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]], "LtotNew"}]}], "//", "Expand"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"L\[Delta]\[Phi]drdrNew", "=", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["\[Delta]\[Phi]", TagBox[ RowBox[{"(", RowBox[{"0", ",", "2"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], RowBox[{ SubscriptBox["\[PartialD]", RowBox[{ SuperscriptBox["\[Delta]\[Phi]", TagBox[ RowBox[{"(", RowBox[{"0", ",", "2"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]], "LtotNew"}]}], "//", "Expand"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ "LtotNew", "-", "L\[Delta]\[Phi]SqrNew", "-", "L\[Delta]\[Phi]dr\[Delta]\[Phi]New", "-", "L\[Delta]\[Phi]dtdtNew", "-", "L\[Delta]\[Phi]drdrNew"}], "//", "Expand"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"\[Delta]2Ltot", "=", RowBox[{ RowBox[{ RowBox[{"L\[Delta]\[Phi]dtdtNew", "-", RowBox[{ FractionBox["1", "2"], SuperscriptBox[ RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], "2"], RowBox[{ SubscriptBox["\[PartialD]", "r"], RowBox[{"(", FractionBox["L\[Delta]\[Phi]dr\[Delta]\[Phi]New", RowBox[{ RowBox[{ SuperscriptBox["\[Delta]\[Phi]", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}]}]], ")"}]}]}], "+", "L\[Delta]\[Phi]SqrNew", "+", "L\[Delta]\[Phi]drdrNew"}], "/.", "rep"}], "//", "Expand"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ FractionBox["%", RowBox[{ RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], FractionBox["1", "2"], " ", "\[Kappa]", " ", RowBox[{"LX", "[", "r", "]"}]}]], "//", "Expand"}]}], "Input", CellFrame->0.5, CellChangeTimes->{{3.8468201063745003`*^9, 3.8468201312967663`*^9}, { 3.846820166537747*^9, 3.846820361940875*^9}, 3.846820478885479*^9, { 3.846820536797279*^9, 3.846820553551614*^9}, 3.84682072564762*^9, { 3.8469208244623356`*^9, 3.846920952534562*^9}, {3.848225924906336*^9, 3.84822600678579*^9}, {3.848226072718018*^9, 3.848226127920033*^9}, 3.848226972887648*^9}, Background->GrayLevel[0.85], CellLabel-> "In[1060]:=",ExpressionUUID->"af0c0bc6-5a3a-4a79-b949-7d7469cb1241"], Cell[BoxData["0"], "Output", CellChangeTimes->{ 3.846820131729398*^9, {3.846820179514861*^9, 3.846820184758236*^9}, 3.8468202372309504`*^9, {3.846820310857942*^9, 3.846820362440857*^9}, 3.8468204794396048`*^9, 3.846820554134582*^9, 3.846820726280962*^9, 3.846821307844364*^9, 3.8469207727055235`*^9, {3.846920825256875*^9, 3.8469208377425747`*^9}, {3.846920891751957*^9, 3.8469209628244886`*^9}, 3.846936781854059*^9, 3.84820749668572*^9, 3.8482258952725487`*^9, 3.8482259256512547`*^9, {3.848225972323513*^9, 3.8482260073223763`*^9}, { 3.84822607949481*^9, 3.848226128420285*^9}, 3.848226975503304*^9}, CellLabel-> "Out[1065]=",ExpressionUUID->"cb4d10ef-ebde-4892-9869-33383862e0ad"], Cell[BoxData[ RowBox[{ RowBox[{"-", FractionBox[ RowBox[{ RowBox[{"\[Gamma]", "[", "r", "]"}], " ", RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["LX", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], RowBox[{"2", " ", RowBox[{"LX", "[", "r", "]"}], " ", RowBox[{"X", "[", "r", "]"}]}]]}], "+", FractionBox[ RowBox[{ RowBox[{"\[Gamma]", "[", "r", "]"}], " ", RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], RowBox[{"4", " ", SuperscriptBox[ RowBox[{"X", "[", "r", "]"}], "2"]}]], "-", FractionBox[ RowBox[{ RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["LX", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], RowBox[{"LX", "[", "r", "]"}]], "-", FractionBox[ RowBox[{ RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], RowBox[{"2", " ", RowBox[{"X", "[", "r", "]"}]}]], "-", RowBox[{ FractionBox["1", "4"], " ", "\[Kappa]", " ", RowBox[{"LX", "[", "r", "]"}], " ", RowBox[{"\[Gamma]", "[", "r", "]"}], " ", RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], "-", FractionBox[ RowBox[{"\[Kappa]", " ", RowBox[{"\[Gamma]", "[", "r", "]"}], " ", RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["LX", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], RowBox[{"2", " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}]], "-", FractionBox[ RowBox[{"\[Kappa]", " ", RowBox[{"LX", "[", "r", "]"}], " ", RowBox[{"\[Gamma]", "[", "r", "]"}], " ", RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], RowBox[{"2", " ", RowBox[{"X", "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}]], "-", FractionBox[ RowBox[{"\[Kappa]", " ", RowBox[{"LX", "[", "r", "]"}], " ", RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], RowBox[{"4", " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SuperscriptBox[ RowBox[{"LX", "[", "r", "]"}], "2"], " ", RowBox[{"\[Gamma]", "[", "r", "]"}], " ", RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "4"]}], RowBox[{"8", " ", SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}]], "-", FractionBox[ RowBox[{ RowBox[{"\[Gamma]", "[", "r", "]"}], " ", RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["LX", "\[Prime]\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], RowBox[{"2", " ", RowBox[{"LX", "[", "r", "]"}]}]], "-", FractionBox[ RowBox[{ RowBox[{"\[Gamma]", "[", "r", "]"}], " ", RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["X", "\[Prime]\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], RowBox[{"2", " ", RowBox[{"X", "[", "r", "]"}]}]], "-", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], " ", RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], "+", RowBox[{ RowBox[{"\[Gamma]", "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[Delta]\[Phi]", TagBox[ RowBox[{"(", RowBox[{"0", ",", "2"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}], "-", RowBox[{ SuperscriptBox["\[Delta]\[Phi]", TagBox[ RowBox[{"(", RowBox[{"2", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}]], "Output", CellChangeTimes->{ 3.846820131729398*^9, {3.846820179514861*^9, 3.846820184758236*^9}, 3.8468202372309504`*^9, {3.846820310857942*^9, 3.846820362440857*^9}, 3.8468204794396048`*^9, 3.846820554134582*^9, 3.846820726280962*^9, 3.846821307844364*^9, 3.8469207727055235`*^9, {3.846920825256875*^9, 3.8469208377425747`*^9}, {3.846920891751957*^9, 3.8469209628244886`*^9}, 3.846936781854059*^9, 3.84820749668572*^9, 3.8482258952725487`*^9, 3.8482259256512547`*^9, {3.848225972323513*^9, 3.8482260073223763`*^9}, { 3.84822607949481*^9, 3.848226128420285*^9}, 3.848226975543651*^9}, CellLabel-> "Out[1067]=",ExpressionUUID->"d67388b0-e1ed-43cb-b322-6c0877b22e6a"] }, Open ]], Cell[TextData[{ StyleBox["The quadratic action of \[Delta]\[Phi] reads", FontColor->RGBColor[1, 0, 0]], "\n", Cell[BoxData[{ RowBox[{ FormBox[ RowBox[{ StyleBox[ RowBox[{"\[Delta]2", "S"}]], "=", RowBox[{ FractionBox["1", "\[Kappa]"], RowBox[{"\[Integral]", RowBox[{"dtdr", " ", StyleBox[ RowBox[{"\[Delta]2", "Ltot"}]]}]}]}]}], TraditionalForm], " "}], "\[IndentingNewLine]", RowBox[{"=", RowBox[{ FractionBox["1", "2"], RowBox[{"\[Integral]", RowBox[{"dtdr", " ", RowBox[{"LX", "[", "r", "]"}], RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"\[Gamma]", "[", "r", "]"}], "U", " ", RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}]}], "+", RowBox[{ RowBox[{"\[Gamma]", "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[Delta]\[Phi]", TagBox[ RowBox[{"(", RowBox[{"0", ",", "2"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}], "-", RowBox[{ SuperscriptBox["\[Delta]\[Phi]", TagBox[ RowBox[{"(", RowBox[{"2", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}]}], ")"}], RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}]}]}]}]}]}], CellChangeTimes->{{3.848220230569875*^9, 3.848220247282542*^9}, 3.848220420522153*^9, {3.848220525023097*^9, 3.848220525441586*^9}, { 3.848220610786234*^9, 3.848220637520849*^9}, {3.848220689942853*^9, 3.848220871964671*^9}, {3.848220910283018*^9, 3.8482209106489153`*^9}, { 3.848220954301062*^9, 3.8482211053843737`*^9}, {3.848221241243826*^9, 3.848221244955597*^9}, {3.848221497862483*^9, 3.848221554470883*^9}}, ExpressionUUID->"c26751d9-bda7-4180-b47f-263eda0b951a"], "\nwhere\nU=", Cell[BoxData[ RowBox[{ RowBox[{"-", FractionBox[ RowBox[{ RowBox[{ SuperscriptBox["LX", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], RowBox[{"2", " ", RowBox[{"LX", "[", "r", "]"}], " ", RowBox[{"X", "[", "r", "]"}]}]]}], "+", FractionBox[ SuperscriptBox[ RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"], RowBox[{"4", " ", SuperscriptBox[ RowBox[{"X", "[", "r", "]"}], "2"]}]], "-", FractionBox[ RowBox[{ RowBox[{ SuperscriptBox["LX", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], RowBox[{ RowBox[{"LX", "[", "r", "]"}], " ", RowBox[{"\[Gamma]", "[", "r", "]"}]}]], "-", FractionBox[ RowBox[{ RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], RowBox[{"2", " ", RowBox[{"X", "[", "r", "]"}], " ", RowBox[{"\[Gamma]", "[", "r", "]"}]}]], "-", RowBox[{ FractionBox["1", "4"], " ", "\[Kappa]", " ", RowBox[{"LX", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], "-", FractionBox[ RowBox[{"\[Kappa]", " ", RowBox[{ SuperscriptBox["LX", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], RowBox[{"2", " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}]], "-", FractionBox[ RowBox[{"\[Kappa]", " ", RowBox[{"LX", "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], RowBox[{"2", " ", RowBox[{"X", "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}]], "-", FractionBox[ RowBox[{"\[Kappa]", " ", RowBox[{"LX", "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], RowBox[{"4", " ", RowBox[{"\[Gamma]", "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SuperscriptBox[ RowBox[{"LX", "[", "r", "]"}], "2"], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "4"]}], RowBox[{"8", " ", SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["LX", "\[Prime]\[Prime]", MultilineFunction->None], "[", "r", "]"}], RowBox[{"2", " ", RowBox[{"LX", "[", "r", "]"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["X", "\[Prime]\[Prime]", MultilineFunction->None], "[", "r", "]"}], RowBox[{"2", " ", RowBox[{"X", "[", "r", "]"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]\[Prime]", MultilineFunction->None], "[", "r", "]"}], RowBox[{"2", " ", RowBox[{"\[Gamma]", "[", "r", "]"}]}]]}]], CellChangeTimes->{{3.848226748149658*^9, 3.8482267511406403`*^9}}, ExpressionUUID->"ec9057ef-e2a1-4b6c-8154-66bdff79a5a7"] }], "Text", CellFrame->{{0.5, 3}, {3, 0.5}}, CellFrameColor->RGBColor[1, 0, 0], CellChangeTimes->{{3.848217973832711*^9, 3.848218000825056*^9}, { 3.848218628109356*^9, 3.8482186287854757`*^9}, {3.848219306008656*^9, 3.848219324316039*^9}, {3.848221586902548*^9, 3.848221614006402*^9}, { 3.8482261811208687`*^9, 3.848226291048932*^9}, {3.848226341815493*^9, 3.848226388685093*^9}, {3.8482264496912537`*^9, 3.848226454458282*^9}, { 3.848226591429585*^9, 3.848226704839363*^9}, {3.848226759628881*^9, 3.848226799729507*^9}, 3.848226929616118*^9}, Background->GrayLevel[ 0.85],ExpressionUUID->"f1ac0dc3-da91-4786-89a7-b44be1883423"] }, Open ]], Cell[CellGroupData[{ Cell["\<\ 5. The field transformation and the spatial coordinate transformation\ \>", "Section", CellChangeTimes->{ 3.848178877404808*^9, {3.848227089036105*^9, 3.848227098682398*^9}},ExpressionUUID->"aa679214-7fed-48a8-831f-\ 1977f17c1b2f"], Cell[TextData[{ "We first do the field transformation ", Cell[BoxData[ RowBox[{ RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", RowBox[{ SuperscriptBox[ RowBox[{"LX", "[", "r", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], SuperscriptBox[ RowBox[{"\[Gamma]", "[", "r", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "4"}]], RowBox[{"G", "[", RowBox[{"t", ",", "r"}], "]"}]}]}]],ExpressionUUID-> "cff3c99e-a4d3-4d7f-bdc2-6adfbd55582b"], ", which is realized by the following replacement: " }], "Text", CellChangeTimes->{{3.848227077031231*^9, 3.848227124001202*^9}, { 3.848227189010725*^9, 3.848227278795155*^9}}, FontColor->RGBColor[ 0, 0, 1],ExpressionUUID->"3a4eb12e-fae4-4724-97fd-63a432cddf50"], Cell[TextData[Cell[BoxData[ RowBox[{"/.", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["\[Delta]\[Phi]", TagBox[ RowBox[{"(", RowBox[{"2", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"t", ",", "t"}]], RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"LX", "[", "r", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], SuperscriptBox[ RowBox[{"\[Gamma]", "[", "r", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "4"}]], RowBox[{"G", "[", RowBox[{"t", ",", "r"}], "]"}]}], ")"}]}]}], ",", RowBox[{ RowBox[{ SuperscriptBox["\[Delta]\[Phi]", TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", RowBox[{ SubscriptBox["\[PartialD]", "t"], RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"LX", "[", "r", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], SuperscriptBox[ RowBox[{"\[Gamma]", "[", "r", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "4"}]], RowBox[{"G", "[", RowBox[{"t", ",", "r"}], "]"}]}], ")"}]}]}], ",", RowBox[{ RowBox[{ SuperscriptBox["\[Delta]\[Phi]", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", RowBox[{ SubscriptBox["\[PartialD]", "r"], RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"LX", "[", "r", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], SuperscriptBox[ RowBox[{"\[Gamma]", "[", "r", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "4"}]], RowBox[{"G", "[", RowBox[{"t", ",", "r"}], "]"}]}], ")"}]}]}], ",", RowBox[{ RowBox[{ SuperscriptBox["\[Delta]\[Phi]", TagBox[ RowBox[{"(", RowBox[{"0", ",", "2"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"r", ",", "r"}]], RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"LX", "[", "r", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], SuperscriptBox[ RowBox[{"\[Gamma]", "[", "r", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "4"}]], RowBox[{"G", "[", RowBox[{"t", ",", "r"}], "]"}]}], ")"}]}]}], ",", RowBox[{ RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", RowBox[{ SuperscriptBox[ RowBox[{"LX", "[", "r", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], SuperscriptBox[ RowBox[{"\[Gamma]", "[", "r", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "4"}]], RowBox[{"G", "[", RowBox[{"t", ",", "r"}], "]"}]}]}]}], "}"}]}]],ExpressionUUID->"91423288-3f2a-4de2-b60f-a2a72f9b6f17"]], "Text", CellFrame->0.5, CellChangeTimes->{{3.848179331448266*^9, 3.848179353696516*^9}, { 3.8482076108137007`*^9, 3.848207611906423*^9}, {3.84822718678332*^9, 3.848227186783353*^9}, 3.8482272651498833`*^9}, Background->GrayLevel[ 1],ExpressionUUID->"d3ce9363-9fae-410d-9ab7-efd61f6d2751"], Cell[TextData[Cell[BoxData[ StyleBox[ RowBox[{ RowBox[{ RowBox[{ "Then", " ", "we", " ", "conduct", " ", "a", " ", "spatial", " ", "coordinate", " ", "tranformation", " ", "to", " ", "y"}], "-", RowBox[{"coordinates", ":", " ", "\[IndentingNewLine]", FractionBox["d", "dr"]}]}], "=", RowBox[{ RowBox[{ FractionBox["dy", "dr"], FractionBox["d", "dy"]}], "=", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "r", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ FractionBox["d", "dy"], ".", " ", "\[LineSeparator]", "This"}], " ", "transformation", " ", "is", " ", "realized", " ", "by", " ", "the", " ", "following", " ", RowBox[{"replacement", ":"}], " "}]}]}], FontColor->RGBColor[ 0, 0, 1]]],ExpressionUUID->"d3a74693-374b-4354-93d3-b6a18d6891c0"]], "Text",\ CellChangeTimes->{{3.8482277317458467`*^9, 3.8482277545293922`*^9}},ExpressionUUID->"21ad36ee-8500-4596-9663-\ 31f74998c1f9"], Cell[TextData[Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"/.", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ RowBox[{"LX", "''"}], "[", "r", "]"}], "\[Rule]", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"LX", "[", "y", "]"}]}]}], ")"}]}]}]}], ",", " ", RowBox[{ RowBox[{ SuperscriptBox["LX", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "\[Rule]", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"LX", "[", "y", "]"}]}]}]}], ",", RowBox[{ RowBox[{"LX", "[", "r", "]"}], "\[Rule]", " ", RowBox[{"LX", "[", "y", "]"}]}], ",", RowBox[{ RowBox[{ RowBox[{"\[Gamma]", "''"}], "[", "r", "]"}], "\[Rule]", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"\[Gamma]", "[", "y", "]"}]}]}], ")"}]}]}]}], ",", " ", RowBox[{ RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "\[Rule]", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"\[Gamma]", "[", "y", "]"}]}]}]}], ",", RowBox[{ RowBox[{"\[Gamma]", "[", "r", "]"}], "\[Rule]", " ", RowBox[{"\[Gamma]", "[", "y", "]"}]}], ",", RowBox[{ RowBox[{ SuperscriptBox["G", TagBox[ RowBox[{"(", RowBox[{"2", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", RowBox[{ SuperscriptBox["G", TagBox[ RowBox[{"(", RowBox[{"2", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "y"}], "]"}]}], ",", RowBox[{ RowBox[{ SuperscriptBox["G", TagBox[ RowBox[{"(", RowBox[{"0", ",", "2"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}]}]}], ")"}]}]}]}], ",", RowBox[{ RowBox[{ SuperscriptBox["G", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}]}]}]}], ",", " ", RowBox[{ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "\[Rule]", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"\[Phi]", "[", "y", "]"}]}]}]}], ",", RowBox[{ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "\[Rule]", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"A", "[", "y", "]"}]}]}]}], ",", RowBox[{ RowBox[{"G", "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}]}], " ", ",", RowBox[{ RowBox[{ RowBox[{"X", "''"}], "[", "r", "]"}], "\[Rule]", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"X", "[", "y", "]"}]}]}], ")"}]}]}]}], ",", RowBox[{ RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "\[Rule]", " ", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"X", "[", "y", "]"}]}]}]}], ",", RowBox[{ RowBox[{"X", "[", "r", "]"}], "\[Rule]", " ", RowBox[{"X", "[", "y", "]"}]}]}], "}"}]}], "]"}], "}"}]],ExpressionUUID->"9c788ea5-5165-4220-bfe7-6c62d8c75541"]], "Text", CellFrame->0.5, CellChangeTimes->{{3.848179331448266*^9, 3.848179353696516*^9}, { 3.8481814221506977`*^9, 3.848181443516552*^9}, {3.848181479290329*^9, 3.848181479290772*^9}, {3.848227561580553*^9, 3.848227608599648*^9}, { 3.848227706361581*^9, 3.848227708778113*^9}}, Background->GrayLevel[ 1],ExpressionUUID->"673f7390-1948-431e-aa95-7eb0320a1640"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{" ", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"\[Delta]2Ltot", "/.", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["\[Delta]\[Phi]", TagBox[ RowBox[{"(", RowBox[{"2", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"t", ",", "t"}]], RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"LX", "[", "r", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], SuperscriptBox[ RowBox[{"\[Gamma]", "[", "r", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "4"}]], RowBox[{"G", "[", RowBox[{"t", ",", "r"}], "]"}]}], ")"}]}]}], ",", RowBox[{ RowBox[{ SuperscriptBox["\[Delta]\[Phi]", TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", RowBox[{ SubscriptBox["\[PartialD]", "t"], RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"LX", "[", "r", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], SuperscriptBox[ RowBox[{"\[Gamma]", "[", "r", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "4"}]], RowBox[{"G", "[", RowBox[{"t", ",", "r"}], "]"}]}], ")"}]}]}], ",", RowBox[{ RowBox[{ SuperscriptBox["\[Delta]\[Phi]", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", RowBox[{ SubscriptBox["\[PartialD]", "r"], RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"LX", "[", "r", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], SuperscriptBox[ RowBox[{"\[Gamma]", "[", "r", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "4"}]], RowBox[{"G", "[", RowBox[{"t", ",", "r"}], "]"}]}], ")"}]}]}], ",", RowBox[{ RowBox[{ SuperscriptBox["\[Delta]\[Phi]", TagBox[ RowBox[{"(", RowBox[{"0", ",", "2"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"r", ",", "r"}]], RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"LX", "[", "r", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], SuperscriptBox[ RowBox[{"\[Gamma]", "[", "r", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "4"}]], RowBox[{"G", "[", RowBox[{"t", ",", "r"}], "]"}]}], ")"}]}]}], ",", RowBox[{ RowBox[{"\[Delta]\[Phi]", "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", RowBox[{ SuperscriptBox[ RowBox[{"LX", "[", "r", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], SuperscriptBox[ RowBox[{"\[Gamma]", "[", "r", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "4"}]], RowBox[{"G", "[", RowBox[{"t", ",", "r"}], "]"}]}]}]}], "}"}]}], "/.", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ RowBox[{"LX", "''"}], "[", "r", "]"}], "\[Rule]", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"LX", "[", "y", "]"}]}]}], ")"}]}]}]}], ",", " ", RowBox[{ RowBox[{ SuperscriptBox["LX", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "\[Rule]", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"LX", "[", "y", "]"}]}]}]}], ",", RowBox[{ RowBox[{"LX", "[", "r", "]"}], "\[Rule]", " ", RowBox[{"LX", "[", "y", "]"}]}], ",", RowBox[{ RowBox[{ RowBox[{"\[Gamma]", "''"}], "[", "r", "]"}], "\[Rule]", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"\[Gamma]", "[", "y", "]"}]}]}], ")"}]}]}]}], ",", " ", RowBox[{ RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "\[Rule]", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"\[Gamma]", "[", "y", "]"}]}]}]}], ",", RowBox[{ RowBox[{"\[Gamma]", "[", "r", "]"}], "\[Rule]", " ", RowBox[{"\[Gamma]", "[", "y", "]"}]}], ",", RowBox[{ RowBox[{ SuperscriptBox["G", TagBox[ RowBox[{"(", RowBox[{"2", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", RowBox[{ SuperscriptBox["G", TagBox[ RowBox[{"(", RowBox[{"2", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "y"}], "]"}]}], ",", RowBox[{ RowBox[{ SuperscriptBox["G", TagBox[ RowBox[{"(", RowBox[{"0", ",", "2"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}]}]}], ")"}]}]}]}], ",", RowBox[{ RowBox[{ SuperscriptBox["G", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}]}]}]}], ",", " ", RowBox[{ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "\[Rule]", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"\[Phi]", "[", "y", "]"}]}]}]}], ",", RowBox[{ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "\[Rule]", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"A", "[", "y", "]"}]}]}]}], ",", RowBox[{ RowBox[{"G", "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}]}], " ", ",", RowBox[{ RowBox[{ RowBox[{"X", "''"}], "[", "r", "]"}], "\[Rule]", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"X", "[", "y", "]"}]}]}], ")"}]}]}]}], ",", RowBox[{ RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "\[Rule]", " ", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"X", "[", "y", "]"}]}]}]}], ",", RowBox[{ RowBox[{"X", "[", "r", "]"}], "\[Rule]", " ", RowBox[{"X", "[", "y", "]"}]}]}], "}"}]}], "//", "Expand"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ FractionBox["2", "\[Kappa]"], SqrtBox[ RowBox[{"\[Gamma]", "[", "y", "]"}]], "%"}], "//", "Expand"}]}]}]], "Input", CellFrame->0.5, CellChangeTimes->{{3.8482273318034363`*^9, 3.848227384542001*^9}, { 3.8482274899074907`*^9, 3.84822749475664*^9}, {3.848227988028171*^9, 3.848228033117957*^9}}, Background->GrayLevel[0.85], CellLabel-> "In[1076]:=",ExpressionUUID->"9830eccc-20cd-4a96-b00d-e123f04dd525"], Cell[BoxData[ RowBox[{ FractionBox[ RowBox[{"3", " ", SuperscriptBox[ RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}], "2"], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["LX", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}], RowBox[{"4", " ", SuperscriptBox[ RowBox[{"LX", "[", "y", "]"}], "2"]}]], "-", FractionBox[ RowBox[{ SuperscriptBox[ RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}], "2"], " ", RowBox[{ SuperscriptBox["LX", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"2", " ", RowBox[{"LX", "[", "y", "]"}], " ", RowBox[{"X", "[", "y", "]"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox[ RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}], "2"], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}], RowBox[{"4", " ", SuperscriptBox[ RowBox[{"X", "[", "y", "]"}], "2"]}]], "-", FractionBox[ RowBox[{ SuperscriptBox[ RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}], "2"], " ", RowBox[{ SuperscriptBox["LX", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"4", " ", RowBox[{"LX", "[", "y", "]"}], " ", RowBox[{"\[Gamma]", "[", "y", "]"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox[ RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}], "2"], " ", RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"4", " ", RowBox[{"X", "[", "y", "]"}], " ", RowBox[{"\[Gamma]", "[", "y", "]"}]}]], "+", FractionBox[ RowBox[{"11", " ", SuperscriptBox[ RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}], "2"], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}], RowBox[{"16", " ", SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], "2"]}]], "-", RowBox[{ FractionBox["1", "4"], " ", "\[Kappa]", " ", SuperscriptBox[ RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}], "2"], " ", RowBox[{"LX", "[", "y", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}], "-", FractionBox[ RowBox[{"\[Kappa]", " ", SuperscriptBox[ RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}], "2"], " ", RowBox[{ SuperscriptBox["LX", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}], RowBox[{"2", " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}]], "-", FractionBox[ RowBox[{"\[Kappa]", " ", SuperscriptBox[ RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}], "2"], " ", RowBox[{"LX", "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}], RowBox[{"2", " ", RowBox[{"X", "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}]], "-", FractionBox[ RowBox[{"\[Kappa]", " ", SuperscriptBox[ RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}], "2"], " ", RowBox[{"LX", "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}], RowBox[{"4", " ", RowBox[{"\[Gamma]", "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SuperscriptBox[ RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}], "2"], " ", SuperscriptBox[ RowBox[{"LX", "[", "y", "]"}], "2"], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "4"]}], RowBox[{"8", " ", SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}]], "-", FractionBox[ RowBox[{ SuperscriptBox[ RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}], "2"], " ", RowBox[{ SuperscriptBox["LX", "\[Prime]\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"LX", "[", "y", "]"}]], "-", FractionBox[ RowBox[{ SuperscriptBox[ RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}], "2"], " ", RowBox[{ SuperscriptBox["X", "\[Prime]\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"2", " ", RowBox[{"X", "[", "y", "]"}]}]], "-", FractionBox[ RowBox[{"3", " ", SuperscriptBox[ RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}], "2"], " ", RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"4", " ", RowBox[{"\[Gamma]", "[", "y", "]"}]}]], "-", FractionBox[ RowBox[{ RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}], " ", RowBox[{ SuperscriptBox["LX", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["G", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "y"}], "]"}]}], RowBox[{"LX", "[", "y", "]"}]], "-", FractionBox[ RowBox[{ RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}], " ", RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["G", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "y"}], "]"}]}], RowBox[{"\[Gamma]", "[", "y", "]"}]], "+", RowBox[{ RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}], " ", RowBox[{ SuperscriptBox["G", TagBox[ RowBox[{"(", RowBox[{"0", ",", "2"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "y"}], "]"}]}], "-", RowBox[{ RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}], " ", RowBox[{ SuperscriptBox["G", TagBox[ RowBox[{"(", RowBox[{"2", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "y"}], "]"}]}]}]], "Output", CellChangeTimes->{ 3.848227385978701*^9, 3.8482274555746593`*^9, 3.848227495593232*^9, { 3.848228003356711*^9, 3.848228033691709*^9}}, CellLabel-> "Out[1077]=",ExpressionUUID->"3bc7241b-249d-4777-aeee-dbb7223b3395"] }, Open ]], Cell[TextData[{ StyleBox["After the field and coordinate transformation, the quadratic \ action becomes (Note that dr=", FontColor->RGBColor[0, 0, 1]], Cell[BoxData[ SqrtBox[ RowBox[{"\[Gamma]", "[", "y", "]"}]]], CellChangeTimes->{3.848227385978701*^9, 3.8482274555746593`*^9, 3.848227495593232*^9}, FontColor->RGBColor[0, 0, 1],ExpressionUUID-> "d598016c-d222-4588-99e0-969367c276e0"], StyleBox["dy)", FontColor->RGBColor[0, 0, 1]], "\n", Cell[BoxData[{ RowBox[{ FormBox[ RowBox[{ StyleBox[ RowBox[{"\[Delta]2", "S"}]], "=", RowBox[{ FractionBox["1", "\[Kappa]"], RowBox[{"\[Integral]", RowBox[{"dtdr", " ", StyleBox[ RowBox[{"\[Delta]2", "Ltot"}]]}]}]}]}], TraditionalForm], " ", "=", RowBox[{ FractionBox["1", "\[Kappa]"], RowBox[{"\[Integral]", RowBox[{"dtdy", " ", SqrtBox[ RowBox[{"\[Gamma]", "[", "y", "]"}]], "\[Delta]2Ltot"}]}]}]}], "\[IndentingNewLine]", RowBox[{"=", RowBox[{ FractionBox["1", "2"], RowBox[{"\[Integral]", RowBox[{"dtdy", RowBox[{"(", " ", RowBox[{ FractionBox[ RowBox[{"3", " ", SuperscriptBox[ RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}], "2"], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["LX", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}], RowBox[{"4", " ", SuperscriptBox[ RowBox[{"LX", "[", "y", "]"}], "2"]}]], "-", FractionBox[ RowBox[{ SuperscriptBox[ RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}], "2"], " ", RowBox[{ SuperscriptBox["LX", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"2", " ", RowBox[{"LX", "[", "y", "]"}], " ", RowBox[{"X", "[", "y", "]"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox[ RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}], "2"], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}], RowBox[{"4", " ", SuperscriptBox[ RowBox[{"X", "[", "y", "]"}], "2"]}]], "-", FractionBox[ RowBox[{ SuperscriptBox[ RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}], "2"], " ", RowBox[{ SuperscriptBox["LX", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"4", " ", RowBox[{"LX", "[", "y", "]"}], " ", RowBox[{"\[Gamma]", "[", "y", "]"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox[ RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}], "2"], " ", RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"4", " ", RowBox[{"X", "[", "y", "]"}], " ", RowBox[{"\[Gamma]", "[", "y", "]"}]}]], "+", FractionBox[ RowBox[{"11", " ", SuperscriptBox[ RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}], "2"], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}], RowBox[{"16", " ", SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], "2"]}]], "-", RowBox[{ FractionBox["1", "4"], " ", "\[Kappa]", " ", SuperscriptBox[ RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}], "2"], " ", RowBox[{"LX", "[", "y", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}], "-", FractionBox[ RowBox[{"\[Kappa]", " ", SuperscriptBox[ RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}], "2"], " ", RowBox[{ SuperscriptBox["LX", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}], RowBox[{"2", " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}]], "-", FractionBox[ RowBox[{"\[Kappa]", " ", SuperscriptBox[ RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}], "2"], " ", RowBox[{"LX", "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}], RowBox[{"2", " ", RowBox[{"X", "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}]], "-", FractionBox[ RowBox[{"\[Kappa]", " ", SuperscriptBox[ RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}], "2"], " ", RowBox[{"LX", "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}], RowBox[{"4", " ", RowBox[{"\[Gamma]", "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SuperscriptBox[ RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}], "2"], " ", SuperscriptBox[ RowBox[{"LX", "[", "y", "]"}], "2"], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "4"]}], RowBox[{"8", " ", SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}]], "-", FractionBox[ RowBox[{ SuperscriptBox[ RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}], "2"], " ", RowBox[{ SuperscriptBox["LX", "\[Prime]\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"LX", "[", "y", "]"}]], "-", FractionBox[ RowBox[{ SuperscriptBox[ RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}], "2"], " ", RowBox[{ SuperscriptBox["X", "\[Prime]\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"2", " ", RowBox[{"X", "[", "y", "]"}]}]], "-", FractionBox[ RowBox[{"3", " ", SuperscriptBox[ RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}], "2"], " ", RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"4", " ", RowBox[{"\[Gamma]", "[", "y", "]"}]}]], "-", FractionBox[ RowBox[{ RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}], " ", RowBox[{ SuperscriptBox["LX", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["G", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "y"}], "]"}]}], RowBox[{"LX", "[", "y", "]"}]], "-", FractionBox[ RowBox[{ RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}], " ", RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["G", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "y"}], "]"}]}], RowBox[{"\[Gamma]", "[", "y", "]"}]], "+", RowBox[{ RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}], " ", RowBox[{ SuperscriptBox["G", TagBox[ RowBox[{"(", RowBox[{"0", ",", "2"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "y"}], "]"}]}], "-", RowBox[{ RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}], " ", RowBox[{ SuperscriptBox["G", TagBox[ RowBox[{"(", RowBox[{"2", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "y"}], "]"}]}]}], ")"}]}]}]}]}]}], CellChangeTimes->{{3.848220230569875*^9, 3.848220247282542*^9}, 3.848220420522153*^9, {3.848220525023097*^9, 3.848220525441586*^9}, { 3.848220610786234*^9, 3.848220637520849*^9}, {3.848220689942853*^9, 3.848220871964671*^9}, {3.848220910283018*^9, 3.8482209106489153`*^9}, { 3.848220954301062*^9, 3.8482211053843737`*^9}, {3.848221241243826*^9, 3.848221244955597*^9}, {3.848221497862483*^9, 3.848221554470883*^9}}, ExpressionUUID->"6b323af8-0160-45b0-98c8-ca92c5d54041"], "\n", StyleBox["conducting partial integration to ", FontColor->RGBColor[0, 0, 1]], Cell[BoxData[ RowBox[{ SuperscriptBox["G", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "y"}], "]"}]], CellChangeTimes->{{3.848220230569875*^9, 3.848220247282542*^9}, 3.848220420522153*^9, {3.848220525023097*^9, 3.848220525441586*^9}, { 3.848220610786234*^9, 3.848220637520849*^9}, {3.848220689942853*^9, 3.848220871964671*^9}, {3.848220910283018*^9, 3.8482209106489153`*^9}, { 3.848220954301062*^9, 3.8482211053843737`*^9}, {3.848221241243826*^9, 3.848221244955597*^9}, {3.848221497862483*^9, 3.848221554470883*^9}}, ExpressionUUID->"0e529062-c6da-4481-9c1a-d5587545cfdb"], StyleBox["terms ", FontColor->RGBColor[0, 0, 1]], Cell[BoxData[ RowBox[{ RowBox[{"-", FractionBox[ RowBox[{ RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}], " ", RowBox[{ SuperscriptBox["LX", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["G", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "y"}], "]"}]}], RowBox[{"LX", "[", "y", "]"}]]}], "-", FractionBox[ RowBox[{ RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}], " ", RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["G", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "y"}], "]"}]}], RowBox[{"\[Gamma]", "[", "y", "]"}]]}]],ExpressionUUID-> "be35087a-4098-45a7-bc83-114a49e87a7e"], "=", Cell[BoxData[ RowBox[{ FractionBox["1", "2"], SuperscriptBox[ RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}], "2"], RowBox[{ SubscriptBox["\[PartialD]", "y"], FractionBox[ RowBox[{"\[Kappa]", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"\[Gamma]", "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["LX", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], "+", RowBox[{ RowBox[{"LX", "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}]}], ")"}], " "}], RowBox[{" ", RowBox[{ RowBox[{"LX", "[", "y", "]"}], " ", RowBox[{"\[Gamma]", "[", "y", "]"}]}]}]]}]}]],ExpressionUUID-> "7bc9eb11-9b4e-4105-956e-ff6e23def0b5"], "\n", StyleBox["we obtain", FontColor->RGBColor[0, 0, 1]], "\n", Cell[BoxData[ RowBox[{"\[Delta]2S", "=", RowBox[{ FractionBox["1", "2"], RowBox[{"\[Integral]", RowBox[{"dtdy", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}], " ", RowBox[{ SuperscriptBox["G", TagBox[ RowBox[{"(", RowBox[{"0", ",", "2"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "y"}], "]"}]}], "-", RowBox[{ RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}], " ", RowBox[{ SuperscriptBox["G", TagBox[ RowBox[{"(", RowBox[{"2", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "y"}], "]"}]}], "-", RowBox[{ SubscriptBox["V", "eff"], " ", SuperscriptBox[ RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}], "2"]}]}], ")"}]}]}]}]}]], ExpressionUUID->"e2124779-bbad-4665-87fd-77eabd18d66a"], "\nwhere\n", Cell[BoxData[ RowBox[{ SubscriptBox["V", "eff"], "=", RowBox[{ RowBox[{"-", FractionBox[ SuperscriptBox[ RowBox[{ SuperscriptBox["LX", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"], RowBox[{"4", " ", SuperscriptBox[ RowBox[{"LX", "[", "y", "]"}], "2"]}]]}], "+", FractionBox[ RowBox[{ RowBox[{ SuperscriptBox["LX", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"2", " ", RowBox[{"LX", "[", "y", "]"}], " ", RowBox[{"X", "[", "y", "]"}]}]], "-", FractionBox[ SuperscriptBox[ RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"], RowBox[{"4", " ", SuperscriptBox[ RowBox[{"X", "[", "y", "]"}], "2"]}]], "+", FractionBox[ RowBox[{ RowBox[{ SuperscriptBox["LX", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"4", " ", RowBox[{"LX", "[", "y", "]"}], " ", RowBox[{"\[Gamma]", "[", "y", "]"}]}]], "+", FractionBox[ RowBox[{ RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"4", " ", RowBox[{"X", "[", "y", "]"}], " ", RowBox[{"\[Gamma]", "[", "y", "]"}]}]], "-", FractionBox[ RowBox[{"3", " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}], RowBox[{"16", " ", SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], "2"]}]], "+", RowBox[{ FractionBox["1", "4"], " ", "\[Kappa]", " ", RowBox[{"LX", "[", "y", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}], "+", FractionBox[ RowBox[{"\[Kappa]", " ", RowBox[{ SuperscriptBox["LX", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}], RowBox[{"2", " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}]], "+", FractionBox[ RowBox[{"\[Kappa]", " ", RowBox[{"LX", "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}], RowBox[{"2", " ", RowBox[{"X", "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}]], "+", FractionBox[ RowBox[{"\[Kappa]", " ", RowBox[{"LX", "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}], RowBox[{"4", " ", RowBox[{"\[Gamma]", "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SuperscriptBox[ RowBox[{"LX", "[", "y", "]"}], "2"], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "4"]}], RowBox[{"8", " ", SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["LX", "\[Prime]\[Prime]", MultilineFunction->None], "[", "y", "]"}], RowBox[{"2", " ", RowBox[{"LX", "[", "y", "]"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["X", "\[Prime]\[Prime]", MultilineFunction->None], "[", "y", "]"}], RowBox[{"2", " ", RowBox[{"X", "[", "y", "]"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]\[Prime]", MultilineFunction->None], "[", "y", "]"}], RowBox[{"4", " ", RowBox[{"\[Gamma]", "[", "y", "]"}]}]]}]}]],ExpressionUUID-> "9d3001c3-1a20-463b-9888-6360af4a7220"] }], "Text", CellFrame->{{0.5, 3}, {3, 0.5}}, CellFrameColor->RGBColor[1, 0, 0], CellChangeTimes->{{3.848227803560049*^9, 3.8482278474492683`*^9}, { 3.848227914571713*^9, 3.8482279260842333`*^9}, {3.8482279571423197`*^9, 3.84822796602291*^9}, {3.848228025232732*^9, 3.848228025233098*^9}, { 3.848228063949646*^9, 3.8482280639500227`*^9}, {3.848228119601221*^9, 3.848228184649672*^9}, {3.848228219570695*^9, 3.848228221950983*^9}, { 3.8482282640976*^9, 3.848228335927765*^9}, {3.848228428285231*^9, 3.848228491159205*^9}, {3.848228541482016*^9, 3.8482285757977543`*^9}, { 3.848228957124959*^9, 3.848228957126267*^9}, {3.848229066874683*^9, 3.848229097191288*^9}, {3.848259501957561*^9, 3.848259528674795*^9}}, Background->GrayLevel[ 0.85],ExpressionUUID->"85443fb4-d1c0-43d8-8b67-eefc35643578"] }, Open ]], Cell[CellGroupData[{ Cell["6. Supersymmetric quantum mechanics", "Section", CellChangeTimes->{{3.848181726595376*^9, 3.84818173448435*^9}, { 3.848228633133033*^9, 3.848228644682763*^9}},ExpressionUUID->"c0256a33-670a-41ec-b7a8-\ 99d0b59e1565"], Cell["The effective potential obtained in last section is", "Text", CellChangeTimes->{{3.8482569315577393`*^9, 3.84825695776129*^9}}, FontColor->RGBColor[ 0, 0, 1],ExpressionUUID->"8f5931f8-1ed2-40a9-ae13-6b47bdaccf8a"], Cell[BoxData[ RowBox[{ RowBox[{"Veff", "=", RowBox[{ RowBox[{"-", FractionBox[ SuperscriptBox[ RowBox[{ SuperscriptBox["LX", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"], RowBox[{"4", " ", SuperscriptBox[ RowBox[{"LX", "[", "y", "]"}], "2"]}]]}], "+", FractionBox[ RowBox[{ RowBox[{ SuperscriptBox["LX", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"2", " ", RowBox[{"LX", "[", "y", "]"}], " ", RowBox[{"X", "[", "y", "]"}]}]], "-", FractionBox[ SuperscriptBox[ RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"], RowBox[{"4", " ", SuperscriptBox[ RowBox[{"X", "[", "y", "]"}], "2"]}]], "+", FractionBox[ RowBox[{ RowBox[{ SuperscriptBox["LX", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"4", " ", RowBox[{"LX", "[", "y", "]"}], " ", RowBox[{"\[Gamma]", "[", "y", "]"}]}]], "+", FractionBox[ RowBox[{ RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"4", " ", RowBox[{"X", "[", "y", "]"}], " ", RowBox[{"\[Gamma]", "[", "y", "]"}]}]], "-", FractionBox[ RowBox[{"3", " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}], RowBox[{"16", " ", SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], "2"]}]], "+", RowBox[{ FractionBox["1", "4"], " ", "\[Kappa]", " ", RowBox[{"LX", "[", "y", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}], "+", FractionBox[ RowBox[{"\[Kappa]", " ", RowBox[{ SuperscriptBox["LX", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}], RowBox[{"2", " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}]], "+", FractionBox[ RowBox[{"\[Kappa]", " ", RowBox[{"LX", "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}], RowBox[{"2", " ", RowBox[{"X", "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}]], "+", FractionBox[ RowBox[{"\[Kappa]", " ", RowBox[{"LX", "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}], RowBox[{"4", " ", RowBox[{"\[Gamma]", "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[Kappa]", "2"], " ", SuperscriptBox[ RowBox[{"LX", "[", "y", "]"}], "2"], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "4"]}], RowBox[{"8", " ", SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["LX", "\[Prime]\[Prime]", MultilineFunction->None], "[", "y", "]"}], RowBox[{"2", " ", RowBox[{"LX", "[", "y", "]"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["X", "\[Prime]\[Prime]", MultilineFunction->None], "[", "y", "]"}], RowBox[{"2", " ", RowBox[{"X", "[", "y", "]"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]\[Prime]", MultilineFunction->None], "[", "y", "]"}], RowBox[{"4", " ", RowBox[{"\[Gamma]", "[", "y", "]"}]}]]}]}], ";"}]], "Input", CellFrame->0.5, CellChangeTimes->{{3.84822874411532*^9, 3.848228762244385*^9}, { 3.848229124587571*^9, 3.848229153006609*^9}, 3.848256978425396*^9, { 3.848257067549383*^9, 3.848257086424664*^9}, 3.848259537675959*^9}, Background->GrayLevel[0.85], CellLabel-> "In[1117]:=",ExpressionUUID->"e830d19d-98fa-4124-948c-2f5cb04372f8"], Cell["\<\ On the other hand, from the equation of motion approach, we already showed \ that the effective potential can be written as follows [arXiv: 2108.10166]:\ \>", "Text", CellChangeTimes->{{3.8482569315577393`*^9, 3.84825695776129*^9}, { 3.848257885916099*^9, 3.848257931185852*^9}, {3.848258097890861*^9, 3.848258117539754*^9}}, FontColor->RGBColor[ 0, 0, 1],ExpressionUUID->"88702ab5-6a8d-4211-8851-17fca7cce90e"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"f", "=", RowBox[{ SqrtBox[ RowBox[{"LX", "[", "y", "]"}]], SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{"1", "/", "4"}]], FractionBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]]}]}], ";"}], "\[IndentingNewLine]", RowBox[{"VeffEoM", "=", RowBox[{ FractionBox[ RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"y", ",", "y"}]], "f"}], "f"], "//", "Expand"}]}]}], "Input", CellFrame->0.5, CellChangeTimes->{{3.848257949366743*^9, 3.8482580280203047`*^9}, { 3.8482582013800583`*^9, 3.848258207812133*^9}}, Background->GrayLevel[0.85], CellLabel-> "In[1118]:=",ExpressionUUID->"83208392-a519-4396-9f01-a1d3fa0a411c"], Cell[BoxData[ RowBox[{ RowBox[{"-", FractionBox[ SuperscriptBox[ RowBox[{ SuperscriptBox["LX", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"], RowBox[{"4", " ", SuperscriptBox[ RowBox[{"LX", "[", "y", "]"}], "2"]}]]}], "+", FractionBox[ RowBox[{ RowBox[{ SuperscriptBox["LX", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"4", " ", RowBox[{"LX", "[", "y", "]"}], " ", RowBox[{"\[Gamma]", "[", "y", "]"}]}]], "-", FractionBox[ RowBox[{"3", " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}], RowBox[{"16", " ", SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], "2"]}]], "-", FractionBox[ RowBox[{ RowBox[{ SuperscriptBox["LX", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{ RowBox[{"LX", "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}]], "-", FractionBox[ RowBox[{ RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"2", " ", RowBox[{"\[Gamma]", "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}]], "+", FractionBox[ RowBox[{"2", " ", SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}], SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]], "+", FractionBox[ RowBox[{ SuperscriptBox["LX", "\[Prime]\[Prime]", MultilineFunction->None], "[", "y", "]"}], RowBox[{"2", " ", RowBox[{"LX", "[", "y", "]"}]}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]\[Prime]", MultilineFunction->None], "[", "y", "]"}], RowBox[{"4", " ", RowBox[{"\[Gamma]", "[", "y", "]"}]}]], "+", FractionBox[ RowBox[{ RowBox[{ SuperscriptBox["LX", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{ RowBox[{"LX", "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}]], "+", FractionBox[ RowBox[{ RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"2", " ", RowBox[{"\[Gamma]", "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}]], "-", FractionBox[ RowBox[{"2", " ", RowBox[{ SuperscriptBox["A", "\[Prime]\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["A", TagBox[ RowBox[{"(", "3", ")"}], Derivative], MultilineFunction->None], "[", "y", "]"}], RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[Phi]", TagBox[ RowBox[{"(", "3", ")"}], Derivative], MultilineFunction->None], "[", "y", "]"}], RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]]}]], "Output", CellChangeTimes->{3.8482580298459883`*^9, 3.848258219787587*^9, 3.8482595439428864`*^9}, CellLabel-> "Out[1119]=",ExpressionUUID->"0dc18011-daf5-4ac0-87e6-0a97101f3cc5"] }, Open ]], Cell[TextData[{ "To show VeffEoM=Veff, we eliminate ", Cell[BoxData[ RowBox[{ SuperscriptBox["A", TagBox[ RowBox[{"(", "3", ")"}], Derivative], MultilineFunction->None], "[", "y", "]"}]], CellChangeTimes->{3.8482580298459883`*^9, 3.848258219787587*^9}, ExpressionUUID->"86da2b44-422c-4032-9c09-43ac6a09f34a"], ", ", Cell[BoxData[ RowBox[{ SuperscriptBox["\[Phi]", TagBox[ RowBox[{"(", "3", ")"}], Derivative], MultilineFunction->None], "[", "y", "]"}]], CellChangeTimes->{3.8482580298459883`*^9, 3.848258219787587*^9}, ExpressionUUID->"dce89481-fb17-4c2b-b5ae-dcc387e76ca9"], ", ", Cell[BoxData[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]\[Prime]", MultilineFunction->None], "[", "y", "]"}]], CellChangeTimes->{3.8482580298459883`*^9, 3.848258219787587*^9}, ExpressionUUID->"aa2592c9-1fa3-4c9a-be99-657b1fd1d757"], " and ", Cell[BoxData[ RowBox[{ SuperscriptBox["A", "\[Prime]\[Prime]", MultilineFunction->None], "[", "y", "]"}]], CellChangeTimes->{3.8482580298459883`*^9, 3.848258219787587*^9}, ExpressionUUID->"272a1439-5b00-4f1c-bb47-764ec4fe9c03"], " in terms of ", Cell[BoxData[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]], CellChangeTimes->{3.8482580298459883`*^9, 3.848258219787587*^9}, ExpressionUUID->"070e3b1e-9a5c-4503-9334-5bd95b7362d4"], ", ", Cell[BoxData[ RowBox[{" ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}]],ExpressionUUID-> "e23c20eb-7ca8-422a-b404-50ac5ec93281"], "... This is achieved by the following replacement:" }], "Text", CellChangeTimes->{{3.8482569315577393`*^9, 3.84825695776129*^9}, { 3.848257885916099*^9, 3.848257931185852*^9}, {3.848258097890861*^9, 3.848258117539754*^9}, {3.848258229799582*^9, 3.8482582447323914`*^9}, { 3.848258278037353*^9, 3.848258387304789*^9}}, FontColor->RGBColor[ 0, 0, 1],ExpressionUUID->"ff31931a-01c1-483b-836d-a6ebc7510591"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"repy", "=", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["A", TagBox[ RowBox[{"(", "3", ")"}], Derivative], MultilineFunction->None], "[", "y", "]"}], "\[Rule]", RowBox[{ RowBox[{"2", " ", SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "3"]}], "+", FractionBox[ RowBox[{"3", " ", SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"], " ", RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"2", " ", RowBox[{"\[Gamma]", "[", "y", "]"}]}]], "-", FractionBox[ RowBox[{ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}], RowBox[{"4", " ", SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], "2"]}]], "-", RowBox[{"\[Kappa]", " ", RowBox[{"LX", "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[Kappa]", " ", RowBox[{ SuperscriptBox["LX", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}], "-", FractionBox[ RowBox[{"\[Kappa]", " ", RowBox[{"LX", "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}], RowBox[{"4", " ", RowBox[{"X", "[", "y", "]"}]}]], "-", FractionBox[ RowBox[{"3", " ", "\[Kappa]", " ", RowBox[{"LX", "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}], RowBox[{"8", " ", RowBox[{"\[Gamma]", "[", "y", "]"}]}]], "+", FractionBox[ RowBox[{ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"2", " ", RowBox[{"\[Gamma]", "[", "y", "]"}]}]]}]}], ",", RowBox[{ RowBox[{ SuperscriptBox["A", "\[Prime]\[Prime]", MultilineFunction->None], "[", "y", "]"}], "\[Rule]", RowBox[{ SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"], "+", FractionBox[ RowBox[{ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"2", " ", RowBox[{"\[Gamma]", "[", "y", "]"}]}]], "-", RowBox[{ FractionBox["1", "4"], " ", "\[Kappa]", " ", RowBox[{"LX", "[", "y", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}]}]}], " ", ",", RowBox[{ RowBox[{ SuperscriptBox["\[Phi]", TagBox[ RowBox[{"(", "3", ")"}], Derivative], MultilineFunction->None], "[", "y", "]"}], "\[Rule]", RowBox[{ RowBox[{"2", " ", SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], "+", FractionBox[ RowBox[{ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"X", "[", "y", "]"}]], "-", FractionBox[ RowBox[{ SuperscriptBox[ RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"4", " ", SuperscriptBox[ RowBox[{"X", "[", "y", "]"}], "2"]}]], "+", FractionBox[ RowBox[{"3", " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"2", " ", RowBox[{"\[Gamma]", "[", "y", "]"}]}]], "+", FractionBox[ RowBox[{ RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"2", " ", RowBox[{"X", "[", "y", "]"}], " ", RowBox[{"\[Gamma]", "[", "y", "]"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox[ RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"4", " ", SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], "2"]}]], "-", RowBox[{ FractionBox["1", "4"], " ", "\[Kappa]", " ", RowBox[{"LX", "[", "y", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "3"]}], "+", FractionBox[ RowBox[{ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["X", "\[Prime]\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"2", " ", RowBox[{"X", "[", "y", "]"}]}]], "+", FractionBox[ RowBox[{ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"2", " ", RowBox[{"\[Gamma]", "[", "y", "]"}]}]]}]}], ",", RowBox[{ RowBox[{"LX\[Phi]", "[", "y", "]"}], "\[Rule]", RowBox[{ FractionBox[ RowBox[{ SuperscriptBox["LX", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]], "+", FractionBox[ RowBox[{ RowBox[{"LX", "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"2", " ", RowBox[{"X", "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}]], "-", FractionBox[ RowBox[{ RowBox[{"LX", "[", "y", "]"}], " ", RowBox[{"\[Gamma]", "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"2", " ", RowBox[{"X", "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}]]}]}], ",", RowBox[{ RowBox[{"LXX", "[", "y", "]"}], "\[Rule]", FractionBox[ RowBox[{ RowBox[{"LX", "[", "y", "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"\[Gamma]", "[", "y", "]"}]}], ")"}]}], RowBox[{"2", " ", RowBox[{"X", "[", "y", "]"}]}]]}], ",", RowBox[{ RowBox[{"L\[Phi]\[Phi]", "[", "y", "]"}], "\[Rule]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[Kappa]", " ", SuperscriptBox[ RowBox[{"LX", "[", "y", "]"}], "2"], " ", RowBox[{"X", "[", "y", "]"}]}], "+", FractionBox[ RowBox[{ RowBox[{ SuperscriptBox["LX", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]], "-", FractionBox[ RowBox[{ RowBox[{"LX", "[", "y", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}], RowBox[{ RowBox[{"X", "[", "y", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}]], "+", FractionBox[ RowBox[{ RowBox[{"LX", "[", "y", "]"}], " ", RowBox[{"\[Gamma]", "[", "y", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}], RowBox[{"2", " ", RowBox[{"X", "[", "y", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}]], "-", FractionBox[ RowBox[{ RowBox[{"X", "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["LX", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{ RowBox[{"\[Gamma]", "[", "y", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}]], "-", FractionBox[ RowBox[{ RowBox[{"LX", "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"2", " ", RowBox[{"\[Gamma]", "[", "y", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}]], "+", FractionBox[ RowBox[{"2", " ", RowBox[{"X", "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["LX", "\[Prime]\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]], "+", FractionBox[ RowBox[{ RowBox[{"LX", "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["X", "\[Prime]\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]]}]}], ",", RowBox[{ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]\[Prime]", MultilineFunction->None], "[", "y", "]"}], "\[Rule]", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], "+", FractionBox[ RowBox[{ RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"2", " ", RowBox[{"X", "[", "y", "]"}]}]], "+", FractionBox[ RowBox[{ RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"2", " ", RowBox[{"\[Gamma]", "[", "y", "]"}]}]]}]}]}], "}"}], "//", "Expand"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"VeffEoM", "-", "Veff"}], "/.", "repy"}], "//", "Expand"}]}], "Input", CellFrame->0.5, CellChangeTimes->{{3.8469242378923893`*^9, 3.8469242523151827`*^9}, 3.8469243367964697`*^9, 3.8469244260779457`*^9, {3.8469245620973454`*^9, 3.8469245643476963`*^9}, 3.8469246298666487`*^9, {3.8469247073751125`*^9, 3.8469247339949136`*^9}, {3.846924806015495*^9, 3.8469248157370405`*^9}, { 3.8469250190519476`*^9, 3.8469250200003285`*^9}, {3.848258448186976*^9, 3.8482585166725883`*^9}, 3.848259549385769*^9}, Background->GrayLevel[0.85], CellLabel-> "In[1120]:=",ExpressionUUID->"ed7aaf9d-3bb0-479c-b713-89837cd39cd9"], Cell[BoxData["0"], "Output", CellChangeTimes->{{3.848258472782441*^9, 3.84825851343296*^9}, 3.848259550006949*^9}, CellLabel-> "Out[1121]=",ExpressionUUID->"21bec774-cd6b-478e-9469-55fd92624e06"] }, Open ]], Cell[TextData[{ StyleBox["CONCLUSION:", FontWeight->"Bold", FontColor->RGBColor[1, 0, 0]], StyleBox["\nThe quadratic action of the normal mode is", FontColor->RGBColor[0, 0, 1]], "\n", Cell[BoxData[{ RowBox[{ FormBox[ RowBox[{"\[Delta]2S", "=", RowBox[{ FractionBox["1", "\[Kappa]"], RowBox[{"\[Integral]", RowBox[{"dtdr", " ", "\[Delta]2Ltot"}]}]}]}], TraditionalForm], " ", "=", RowBox[{ FractionBox["1", "\[Kappa]"], RowBox[{"\[Integral]", RowBox[{"dtdy", " ", SqrtBox[ RowBox[{"\[Gamma]", "[", "y", "]"}]], "\[Delta]2Ltot"}]}]}]}], "\[IndentingNewLine]", RowBox[{"=", RowBox[{ FractionBox["1", "2"], RowBox[{"\[Integral]", RowBox[{"dtdy", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}], " ", RowBox[{ SuperscriptBox["G", TagBox[ RowBox[{"(", RowBox[{"0", ",", "2"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "y"}], "]"}]}], "-", RowBox[{ RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}], " ", RowBox[{ SuperscriptBox["G", TagBox[ RowBox[{"(", RowBox[{"2", ",", "0"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "y"}], "]"}]}], "-", RowBox[{ SubscriptBox["V", "eff"], " ", SuperscriptBox[ RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}], "2"]}]}], ")"}]}]}]}]}]}], CellChangeTimes->{{3.848220230569875*^9, 3.848220247282542*^9}, 3.848220420522153*^9, {3.848220525023097*^9, 3.848220525441586*^9}, { 3.848220610786234*^9, 3.848220637520849*^9}, {3.848220689942853*^9, 3.848220871964671*^9}, {3.848220910283018*^9, 3.8482209106489153`*^9}, { 3.848220954301062*^9, 3.8482211053843737`*^9}, {3.848221241243826*^9, 3.848221244955597*^9}, {3.848221497862483*^9, 3.848221554470883*^9}}, ExpressionUUID->"41a68300-31e5-4169-9bf3-7d17251fa2eb"], "\n", StyleBox["Where", FontColor->RGBColor[0, 0, 1]], "\n", Cell[BoxData[ RowBox[{ SubscriptBox["V", "eff"], "=", FractionBox[ RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"y", ",", "y"}]], "f"}], "f"]}]],ExpressionUUID-> "6f039ea3-7750-4b01-af34-b3e047113573"], ", ", Cell[BoxData[ RowBox[{ RowBox[{"f", "=", RowBox[{ SqrtBox[ RowBox[{"LX", "[", "y", "]"}]], SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{"1", "/", "4"}]], FractionBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]]}]}], ";"}]],ExpressionUUID-> "6dcededc-d3d6-4e1e-a8d9-b4f55eb0ba68"], "\n", StyleBox["if we decompose G[t,y]= ", FontColor->RGBColor[0, 0, 1]], Cell[BoxData[ FormBox[ SuperscriptBox["e", "iwt"], TraditionalForm]], FontColor->RGBColor[0, 0, 1],ExpressionUUID-> "82caba19-cdf6-4b03-8282-aa57bc93eecb"], StyleBox["\[Psi][y], then we would obtain a Schr\[ODoubleDot]dinger-like \ equation:", FontColor->RGBColor[0, 0, 1]], "\n-", Cell[BoxData[ FormBox[ FractionBox[ RowBox[{ SuperscriptBox["d", "2"], "\[Psi]"}], SuperscriptBox["dy", "2"]], TraditionalForm]],ExpressionUUID-> "636215cd-0518-48a9-b450-2ad18b75cd37"], "+", Cell[BoxData[ FractionBox[ RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"y", ",", "y"}]], "f"}], "f"]],ExpressionUUID-> "311bfc91-86ce-48ba-9e87-c0729f8fc297"], " ", Cell[BoxData[ FormBox[ RowBox[{"\[Psi]", "=", RowBox[{ SuperscriptBox["w", "2"], "\[Psi]"}]}], TraditionalForm]],ExpressionUUID-> "9657034a-6e00-4f49-8737-bad7fc2a5fe0"], "\nThe Hamiltonian is factorizable\n", Cell[BoxData[ FormBox[ RowBox[{"H", "=", RowBox[{ SuperscriptBox["\[ScriptCapitalA]", "\[Dagger]"], "\[ScriptCapitalA]"}]}], TraditionalForm]],ExpressionUUID-> "c1a85130-e413-41fa-b556-650578d4ebf5"], ", with \[ScriptCapitalA]:= ", Cell[BoxData[ FormBox[ RowBox[{ RowBox[{"-", FractionBox["d", "dy"]}], "+", FractionBox[ RowBox[{ SubscriptBox["\[PartialD]", "y"], "f"}], "f"]}], TraditionalForm]], ExpressionUUID->"73930ebc-c457-4a54-9ff3-3c6cc03e7def"], ", ", Cell[BoxData[ FormBox[ RowBox[{" ", RowBox[{ SuperscriptBox["\[ScriptCapitalA]", "\[Dagger]"], "=", RowBox[{ FractionBox["d", "dy"], "+", FractionBox[ RowBox[{ SubscriptBox["\[PartialD]", "y"], "f"}], "f"]}]}]}], TraditionalForm]],ExpressionUUID->"6d0e97b0-c3cc-47b1-8ae1-7f45e89ed7d8"], "\nThe partner Hamiltonian is ", Cell[BoxData[ FormBox[ RowBox[{ SubscriptBox["H", "-"], "=", SuperscriptBox["\[ScriptCapitalA]\[ScriptCapitalA]", "\[Dagger]"]}], TraditionalForm]],ExpressionUUID->"1c3a6bb3-4722-497c-a3be-48e9bf8ea604"], "=", Cell[BoxData[ RowBox[{ RowBox[{"-", RowBox[{ SuperscriptBox["\[Psi]", "\[Prime]\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], "+", RowBox[{ SubscriptBox["V", "-"], " ", RowBox[{"\[Psi]", "[", "y", "]"}]}]}]], CellChangeTimes->{3.848276386898933*^9, 3.8482764731922894`*^9, 3.848276536563403*^9},ExpressionUUID-> "5f2bb9f7-d36c-425c-8da3-fdbcb6546568"], ", where ", Cell[BoxData[ RowBox[{ SubscriptBox["V", "-"], "=", RowBox[{ RowBox[{ FractionBox[ RowBox[{"2", " ", SuperscriptBox[ RowBox[{ SuperscriptBox["f", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}], SuperscriptBox[ RowBox[{"f", "[", "y", "]"}], "2"]], "-", FractionBox[ RowBox[{" ", RowBox[{ SuperscriptBox["f", "\[Prime]\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"f", "[", "y", "]"}]]}], "="}]}]],ExpressionUUID-> "6280b836-f478-4251-887d-6f5155dcdafe"], Cell[BoxData[ RowBox[{ RowBox[{"f", "[", "y", "]"}], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"(", FractionBox["1", RowBox[{"f", "[", "y", "]"}]], ")"}]}]}]}]], CellChangeTimes->{{3.8482763219507017`*^9, 3.848276386499707*^9}, { 3.848276448203209*^9, 3.8482764726502037`*^9}, {3.84827650935606*^9, 3.8482765360605717`*^9}},ExpressionUUID-> "010dd66c-e671-4f01-8936-6c09ac8c188c"], "." }], "Text", CellFrame->{{0.5, 3}, {3, 0.5}}, CellFrameColor->RGBColor[1, 0, 0], CellChangeTimes->CompressedData[" 1:eJwlz08og3EAxvF31NKcVoRpe9lhEpctVg5EStlur5Wi5N+QhC2UlHZQs+XP QVnSWvHWYv+klFqWtNSrzJwcZpFysL1tNKu9avg97w5Pn9tT38bxBcZcRlGU ggzyacvah4/vmRnN2OCqkXFA2fmNE75tszswGL7ehU5rk0t0uaRt4vcQ7k+V bOvMHUHlXZUPqnutIbg0HxF10uUXsPuseAXdDQ4OtteaH2FgLvQk/tiFBDz9 O65MEcdkrOh0cbgOVtAaJRxkI/kCkXdVC3DLqJMIxJbZmBwaHiQuSHP3B9Ce 1r9A1aUmBXV7zRkYiJlE6XfuG3r8WQHG1kNJyk86TsIp+KplslDhlX1CQ7GQ g1LpSh6OfHnlEuLmxk8NVAtuFWQnVRrYFw/q4cBQaweMB7T9MLoYNcHnek+C Jd6aupLwHxy58P0= "], TextAlignment->Left, Background->GrayLevel[ 0.85],ExpressionUUID->"edd46b27-7064-4fa3-983f-137ce22e0e58"], Cell[CellGroupData[{ Cell[TextData[{ "Appendix: Derivation of ", StyleBox["repy", FontWeight->"Bold"] }], "Subsection", CellChangeTimes->{{3.848258558535655*^9, 3.848258605618615*^9}},ExpressionUUID->"c79b960c-f914-41a8-a8ba-\ 79ebaa5cca3f"], Cell[TextData[{ "The replacement ", StyleBox["repy", FontWeight->"Bold"], " is obtained by first transform the background equations into the \ y-coordinate using ", StyleBox["CoordTransR2Y", FontWeight->"Bold"], ", and then solve ", Cell[BoxData[ RowBox[{ SuperscriptBox["A", "\[Prime]\[Prime]", MultilineFunction->None], "[", "y", "]"}]],ExpressionUUID-> "4d53d970-b3e4-48a0-a17a-ae634ba70060"], ", ", Cell[BoxData[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]\[Prime]", MultilineFunction->None], "[", "y", "]"}]], CellChangeTimes->{{3.846924380266199*^9, 3.8469244203268776`*^9}, 3.8469244934435906`*^9, {3.8469245385350246`*^9, 3.8469246982106695`*^9}, {3.8469247571176376`*^9, 3.8469247985692005`*^9}, {3.846924933864542*^9, 3.846924954645668*^9}, { 3.846925001713662*^9, 3.8469250083010693`*^9}, 3.846936891919965*^9}, ExpressionUUID->"ecb1c606-54cd-4001-a564-14379ecefd38"], ", ..." }], "Text", CellChangeTimes->{{3.848258663842929*^9, 3.848258785546836*^9}}, FontColor->RGBColor[ 0, 0, 1],ExpressionUUID->"a2fbed63-8c7c-42b8-b947-dfb856ef2c62"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"CoordTransR2Y", "=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ RowBox[{"LX", "''"}], "[", "r", "]"}], "\[Rule]", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"LX", "[", "y", "]"}]}]}], ")"}]}]}]}], ",", " ", RowBox[{ RowBox[{ SuperscriptBox["LX", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "\[Rule]", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"LX", "[", "y", "]"}]}]}]}], ",", RowBox[{ RowBox[{"LX", "[", "r", "]"}], "\[Rule]", " ", RowBox[{"LX", "[", "y", "]"}]}], ",", RowBox[{ RowBox[{ RowBox[{"\[Gamma]", "''"}], "[", "r", "]"}], "\[Rule]", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"\[Gamma]", "[", "y", "]"}]}]}], ")"}]}]}]}], ",", " ", RowBox[{ RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "\[Rule]", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"\[Gamma]", "[", "y", "]"}]}]}]}], ",", RowBox[{ RowBox[{"\[Gamma]", "[", "r", "]"}], "\[Rule]", " ", RowBox[{"\[Gamma]", "[", "y", "]"}]}], ",", RowBox[{ RowBox[{ SuperscriptBox["G", TagBox[ RowBox[{"(", RowBox[{"0", ",", "2"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}]}]}], ")"}]}]}]}], ",", RowBox[{ RowBox[{ SuperscriptBox["G", TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None], "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}]}]}]}], ",", " ", RowBox[{ RowBox[{ SuperscriptBox["\[Phi]", TagBox[ RowBox[{"(", "3", ")"}], Derivative], MultilineFunction->None], "[", "r", "]"}], "\[Rule]", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"\[Phi]", "[", "y", "]"}]}]}], ")"}]}]}], ")"}]}]}]}], ",", " ", RowBox[{ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "\[Rule]", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"\[Phi]", "[", "y", "]"}]}]}]}], ",", RowBox[{ RowBox[{ RowBox[{"\[Phi]", "''"}], "[", "r", "]"}], "\[Rule]", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"\[Phi]", "[", "y", "]"}]}]}], ")"}]}]}]}], ",", RowBox[{ RowBox[{ SuperscriptBox["A", TagBox[ RowBox[{"(", "3", ")"}], Derivative], MultilineFunction->None], "[", "r", "]"}], "\[Rule]", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"A", "[", "y", "]"}]}]}], ")"}]}]}], ")"}]}]}]}], ",", RowBox[{ RowBox[{ RowBox[{"A", "''"}], "[", "r", "]"}], "\[Rule]", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"A", "[", "y", "]"}]}]}], ")"}]}]}]}], ",", RowBox[{ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "\[Rule]", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"A", "[", "y", "]"}]}]}]}], ",", RowBox[{ RowBox[{"G", "[", RowBox[{"t", ",", "r"}], "]"}], "\[Rule]", " ", RowBox[{"G", "[", RowBox[{"t", ",", "y"}], "]"}]}], " ", ",", RowBox[{ RowBox[{ RowBox[{"X", "''"}], "[", "r", "]"}], "\[Rule]", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"X", "[", "y", "]"}]}]}], ")"}]}]}]}], ",", RowBox[{ RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "\[Rule]", " ", RowBox[{ SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{ RowBox[{"-", "1"}], "/", "2"}]], RowBox[{ SubscriptBox["\[PartialD]", "y"], RowBox[{"X", "[", "y", "]"}]}]}]}], ",", RowBox[{ RowBox[{"X", "[", "r", "]"}], "\[Rule]", " ", RowBox[{"X", "[", "y", "]"}]}], ",", RowBox[{ RowBox[{"LX\[Phi]", "[", "r", "]"}], "\[Rule]", " ", RowBox[{"LX\[Phi]", "[", "y", "]"}]}], ",", RowBox[{ RowBox[{"L\[Phi]\[Phi]", "[", "r", "]"}], "\[Rule]", RowBox[{"L\[Phi]\[Phi]", "[", "y", "]"}]}]}], " ", "}"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["A", "\[Prime]\[Prime]", MultilineFunction->None], "[", "r", "]"}], "-", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"4", " ", SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], "-", RowBox[{"\[Kappa]", " ", RowBox[{"LX", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}]}], ")"}]}]}], "/.", "CoordTransR2Y"}], "//", "Expand"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Solve", "[", RowBox[{ RowBox[{"%", "\[Equal]", "0"}], ",", RowBox[{ SuperscriptBox["A", "\[Prime]\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], "]"}], "//", "Expand"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], "+", RowBox[{ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], "+", FractionBox[ RowBox[{ RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], RowBox[{"2", " ", RowBox[{"X", "[", "r", "]"}]}]]}], "/.", "CoordTransR2Y"}], "//", "Expand"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Solve", "[", RowBox[{ RowBox[{"%", "\[Equal]", "0"}], ",", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], "]"}], "//", "Expand"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", RowBox[{ SuperscriptBox["\[Phi]", TagBox[ RowBox[{"(", "3", ")"}], Derivative], MultilineFunction->None], "[", "r", "]"}]}], "+", RowBox[{"2", " ", SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], "+", FractionBox[ RowBox[{ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], RowBox[{"X", "[", "r", "]"}]], "-", FractionBox[ RowBox[{ SuperscriptBox[ RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], RowBox[{"4", " ", SuperscriptBox[ RowBox[{"X", "[", "r", "]"}], "2"]}]], "-", RowBox[{ FractionBox["1", "4"], " ", "\[Kappa]", " ", RowBox[{"LX", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "3"]}], "+", FractionBox[ RowBox[{ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["X", "\[Prime]\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], RowBox[{"2", " ", RowBox[{"X", "[", "r", "]"}]}]]}], "/.", "CoordTransR2Y"}], "/.", RowBox[{"{", RowBox[{ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]\[Prime]", MultilineFunction->None], "[", "y", "]"}], "\[Rule]", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], "+", FractionBox[ RowBox[{ RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"2", " ", RowBox[{"X", "[", "y", "]"}]}]], "+", FractionBox[ RowBox[{ RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"2", " ", RowBox[{"\[Gamma]", "[", "y", "]"}]}]]}]}], "}"}]}], "//", "Expand"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Solve", "[", RowBox[{ RowBox[{"%", "\[Equal]", "0"}], ",", RowBox[{ SuperscriptBox["\[Phi]", TagBox[ RowBox[{"(", "3", ")"}], Derivative], MultilineFunction->None], "[", "y", "]"}]}], "]"}], "//", "Expand"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", RowBox[{"LX\[Phi]", "[", "r", "]"}]}], "+", FractionBox[ RowBox[{ SuperscriptBox["LX", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]], "+", FractionBox[ RowBox[{ RowBox[{"LX", "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], RowBox[{"2", " ", RowBox[{"X", "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}]], "-", FractionBox[ RowBox[{ RowBox[{"LX", "[", "r", "]"}], " ", RowBox[{"\[Gamma]", "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], RowBox[{"2", " ", RowBox[{"X", "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}]]}], "/.", "CoordTransR2Y"}], "//", "Expand"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Solve", "[", RowBox[{ RowBox[{"%", "\[Equal]", "0"}], ",", RowBox[{"LX\[Phi]", "[", "y", "]"}]}], "]"}], "//", "Expand"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", RowBox[{"L\[Phi]\[Phi]", "[", "r", "]"}]}], "+", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[Kappa]", " ", SuperscriptBox[ RowBox[{"LX", "[", "r", "]"}], "2"], " ", RowBox[{"X", "[", "r", "]"}]}], "+", FractionBox[ RowBox[{ RowBox[{ SuperscriptBox["LX", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]], "-", FractionBox[ RowBox[{ RowBox[{"LX", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], RowBox[{ RowBox[{"X", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}]], "+", FractionBox[ RowBox[{ RowBox[{"LX", "[", "r", "]"}], " ", RowBox[{"\[Gamma]", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], RowBox[{"2", " ", RowBox[{"X", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}]], "+", FractionBox[ RowBox[{"2", " ", RowBox[{"X", "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["LX", "\[Prime]\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]], "+", FractionBox[ RowBox[{ RowBox[{"LX", "[", "r", "]"}], " ", RowBox[{ SuperscriptBox["X", "\[Prime]\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]]}], "/.", "CoordTransR2Y"}], "//", "Expand"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Solve", "[", RowBox[{ RowBox[{"%", "\[Equal]", "0"}], ",", RowBox[{"L\[Phi]\[Phi]", "[", "y", "]"}]}], "]"}], "//", "Expand"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{ SubscriptBox["\[PartialD]", "r"], RowBox[{"(", RowBox[{ RowBox[{"-", RowBox[{ SuperscriptBox["A", "\[Prime]\[Prime]", MultilineFunction->None], "[", "r", "]"}]}], "+", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"4", " ", SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}], "-", RowBox[{"\[Kappa]", " ", RowBox[{"LX", "[", "r", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "r", "]"}], "2"]}]}], ")"}]}]}], ")"}]}], "/.", "CoordTransR2Y"}], "/.", RowBox[{"{", RowBox[{ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]\[Prime]", MultilineFunction->None], "[", "y", "]"}], "\[Rule]", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], "+", FractionBox[ RowBox[{ RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"2", " ", RowBox[{"X", "[", "y", "]"}]}]], "+", FractionBox[ RowBox[{ RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"2", " ", RowBox[{"\[Gamma]", "[", "y", "]"}]}]]}]}], "}"}]}], "/.", RowBox[{"{", RowBox[{ RowBox[{ SuperscriptBox["A", "\[Prime]\[Prime]", MultilineFunction->None], "[", "y", "]"}], "\[Rule]", RowBox[{ SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"], "+", FractionBox[ RowBox[{ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"2", " ", RowBox[{"\[Gamma]", "[", "y", "]"}]}]], "-", RowBox[{ FractionBox["1", "4"], " ", "\[Kappa]", " ", RowBox[{"LX", "[", "y", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}]}]}], "}"}]}], "//", "Expand"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Solve", "[", RowBox[{ RowBox[{"%", "\[Equal]", "0"}], ",", RowBox[{ SuperscriptBox["A", TagBox[ RowBox[{"(", "3", ")"}], Derivative], MultilineFunction->None], "[", "y", "]"}]}], "]"}], "//", "Expand"}]}], "Input", CellFrame->0.5, CellChangeTimes->{{3.8469243424359865`*^9, 3.84692439733171*^9}, { 3.8469244488183136`*^9, 3.8469244905640116`*^9}, {3.846924672809713*^9, 3.846924678375743*^9}, {3.8469247712291784`*^9, 3.8469247800453057`*^9}, { 3.8469249839117136`*^9, 3.8469249882717776`*^9}, {3.848258648004787*^9, 3.84825864844663*^9}}, Background->GrayLevel[ 0.85],ExpressionUUID->"f9752b07-30fd-4d20-892f-54c171977dd7"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{ SuperscriptBox["A", "\[Prime]\[Prime]", MultilineFunction->None], "[", "y", "]"}], "\[Rule]", RowBox[{ SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"], "+", FractionBox[ RowBox[{ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"2", " ", RowBox[{"\[Gamma]", "[", "y", "]"}]}]], "-", RowBox[{ FractionBox["1", "4"], " ", "\[Kappa]", " ", RowBox[{"LX", "[", "y", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}]}]}], "}"}], "}"}]], "Output", CellChangeTimes->{{3.846924380266199*^9, 3.8469244203268776`*^9}, 3.8469244934435906`*^9, {3.8469245385350246`*^9, 3.8469246982106695`*^9}, { 3.8469247571176376`*^9, 3.8469247985692005`*^9}, {3.846924933864542*^9, 3.846924954645668*^9}, {3.846925001713662*^9, 3.8469250083010693`*^9}, 3.846936891917233*^9}, CellLabel->"Out[97]=",ExpressionUUID->"481fd019-1c6f-463e-8ff5-0cf186d3afdd"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]\[Prime]", MultilineFunction->None], "[", "y", "]"}], "\[Rule]", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], "+", FractionBox[ RowBox[{ RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"2", " ", RowBox[{"X", "[", "y", "]"}]}]], "+", FractionBox[ RowBox[{ RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"2", " ", RowBox[{"\[Gamma]", "[", "y", "]"}]}]]}]}], "}"}], "}"}]], "Output", CellChangeTimes->{{3.846924380266199*^9, 3.8469244203268776`*^9}, 3.8469244934435906`*^9, {3.8469245385350246`*^9, 3.8469246982106695`*^9}, { 3.8469247571176376`*^9, 3.8469247985692005`*^9}, {3.846924933864542*^9, 3.846924954645668*^9}, {3.846925001713662*^9, 3.8469250083010693`*^9}, 3.846936891919965*^9}, CellLabel->"Out[99]=",ExpressionUUID->"fe38181b-7fd1-4b7b-b95b-17b750e0c2f3"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{ SuperscriptBox["\[Phi]", TagBox[ RowBox[{"(", "3", ")"}], Derivative], MultilineFunction->None], "[", "y", "]"}], "\[Rule]", RowBox[{ RowBox[{"2", " ", SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], "+", FractionBox[ RowBox[{ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"X", "[", "y", "]"}]], "-", FractionBox[ RowBox[{ SuperscriptBox[ RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"4", " ", SuperscriptBox[ RowBox[{"X", "[", "y", "]"}], "2"]}]], "+", FractionBox[ RowBox[{"3", " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"2", " ", RowBox[{"\[Gamma]", "[", "y", "]"}]}]], "+", FractionBox[ RowBox[{ RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"2", " ", RowBox[{"X", "[", "y", "]"}], " ", RowBox[{"\[Gamma]", "[", "y", "]"}]}]], "-", FractionBox[ RowBox[{ SuperscriptBox[ RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"4", " ", SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], "2"]}]], "-", RowBox[{ FractionBox["1", "4"], " ", "\[Kappa]", " ", RowBox[{"LX", "[", "y", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "3"]}], "+", FractionBox[ RowBox[{ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["X", "\[Prime]\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"2", " ", RowBox[{"X", "[", "y", "]"}]}]], "+", FractionBox[ RowBox[{ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"2", " ", RowBox[{"\[Gamma]", "[", "y", "]"}]}]]}]}], "}"}], "}"}]], "Output", CellChangeTimes->{{3.846924380266199*^9, 3.8469244203268776`*^9}, 3.8469244934435906`*^9, {3.8469245385350246`*^9, 3.8469246982106695`*^9}, { 3.8469247571176376`*^9, 3.8469247985692005`*^9}, {3.846924933864542*^9, 3.846924954645668*^9}, {3.846925001713662*^9, 3.8469250083010693`*^9}, 3.8469368919581738`*^9}, CellLabel-> "Out[101]=",ExpressionUUID->"24b6fe8a-9d81-4fcb-a85c-8dac00e9a70f"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"LX\[Phi]", "[", "y", "]"}], "\[Rule]", RowBox[{ FractionBox[ RowBox[{ SuperscriptBox["LX", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]], "+", FractionBox[ RowBox[{ RowBox[{"LX", "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"2", " ", RowBox[{"X", "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}]], "-", FractionBox[ RowBox[{ RowBox[{"LX", "[", "y", "]"}], " ", RowBox[{"\[Gamma]", "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"2", " ", RowBox[{"X", "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}]]}]}], "}"}], "}"}]], "Output", CellChangeTimes->{{3.846924380266199*^9, 3.8469244203268776`*^9}, 3.8469244934435906`*^9, {3.8469245385350246`*^9, 3.8469246982106695`*^9}, { 3.8469247571176376`*^9, 3.8469247985692005`*^9}, {3.846924933864542*^9, 3.846924954645668*^9}, {3.846925001713662*^9, 3.8469250083010693`*^9}, 3.8469368919613132`*^9}, CellLabel-> "Out[103]=",ExpressionUUID->"8c44581e-f205-484b-9451-9a18b2f03055"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"L\[Phi]\[Phi]", "[", "y", "]"}], "\[Rule]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", "\[Kappa]", " ", SuperscriptBox[ RowBox[{"LX", "[", "y", "]"}], "2"], " ", RowBox[{"X", "[", "y", "]"}]}], "+", FractionBox[ RowBox[{ RowBox[{ SuperscriptBox["LX", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]], "-", FractionBox[ RowBox[{ RowBox[{"LX", "[", "y", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}], RowBox[{ RowBox[{"X", "[", "y", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}]], "+", FractionBox[ RowBox[{ RowBox[{"LX", "[", "y", "]"}], " ", RowBox[{"\[Gamma]", "[", "y", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}], RowBox[{"2", " ", RowBox[{"X", "[", "y", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}]], "-", FractionBox[ RowBox[{ RowBox[{"X", "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["LX", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{ RowBox[{"\[Gamma]", "[", "y", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}]], "-", FractionBox[ RowBox[{ RowBox[{"LX", "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"2", " ", RowBox[{"\[Gamma]", "[", "y", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}]], "+", FractionBox[ RowBox[{"2", " ", RowBox[{"X", "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["LX", "\[Prime]\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]], "+", FractionBox[ RowBox[{ RowBox[{"LX", "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["X", "\[Prime]\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]]}]}], "}"}], "}"}]], "Output", CellChangeTimes->{{3.846924380266199*^9, 3.8469244203268776`*^9}, 3.8469244934435906`*^9, {3.8469245385350246`*^9, 3.8469246982106695`*^9}, { 3.8469247571176376`*^9, 3.8469247985692005`*^9}, {3.846924933864542*^9, 3.846924954645668*^9}, {3.846925001713662*^9, 3.8469250083010693`*^9}, 3.846936891964437*^9}, CellLabel-> "Out[105]=",ExpressionUUID->"84519aaf-d21c-4ccf-a1d9-c462c10c3eac"], Cell[BoxData[ RowBox[{ FractionBox[ RowBox[{"2", " ", SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "3"]}], SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{"3", "/", "2"}]]], "+", FractionBox[ RowBox[{"3", " ", SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"], " ", RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"2", " ", SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{"5", "/", "2"}]]}]], "-", FractionBox[ RowBox[{ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}], RowBox[{"4", " ", SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{"7", "/", "2"}]]}]], "-", FractionBox[ RowBox[{"\[Kappa]", " ", RowBox[{"LX", "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}], SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{"3", "/", "2"}]]], "-", FractionBox[ RowBox[{"\[Kappa]", " ", RowBox[{ SuperscriptBox["LX", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}], RowBox[{"4", " ", SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{"3", "/", "2"}]]}]], "-", FractionBox[ RowBox[{"\[Kappa]", " ", RowBox[{"LX", "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}], RowBox[{"4", " ", RowBox[{"X", "[", "y", "]"}], " ", SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{"3", "/", "2"}]]}]], "-", FractionBox[ RowBox[{"3", " ", "\[Kappa]", " ", RowBox[{"LX", "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}], RowBox[{"8", " ", SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{"5", "/", "2"}]]}]], "+", FractionBox[ RowBox[{ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"2", " ", SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{"5", "/", "2"}]]}]], "-", FractionBox[ RowBox[{ SuperscriptBox["A", TagBox[ RowBox[{"(", "3", ")"}], Derivative], MultilineFunction->None], "[", "y", "]"}], SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], RowBox[{"3", "/", "2"}]]]}]], "Output", CellChangeTimes->{{3.846924380266199*^9, 3.8469244203268776`*^9}, 3.8469244934435906`*^9, {3.8469245385350246`*^9, 3.8469246982106695`*^9}, { 3.8469247571176376`*^9, 3.8469247985692005`*^9}, {3.846924933864542*^9, 3.846924954645668*^9}, {3.846925001713662*^9, 3.8469250083010693`*^9}, 3.846936891967987*^9}, CellLabel-> "Out[106]=",ExpressionUUID->"ae6607c9-c32e-4378-aeec-479af2010628"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{ SuperscriptBox["A", TagBox[ RowBox[{"(", "3", ")"}], Derivative], MultilineFunction->None], "[", "y", "]"}], "\[Rule]", RowBox[{ RowBox[{"2", " ", SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "3"]}], "+", FractionBox[ RowBox[{"3", " ", SuperscriptBox[ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"], " ", RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"2", " ", RowBox[{"\[Gamma]", "[", "y", "]"}]}]], "-", FractionBox[ RowBox[{ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}], RowBox[{"4", " ", SuperscriptBox[ RowBox[{"\[Gamma]", "[", "y", "]"}], "2"]}]], "-", RowBox[{"\[Kappa]", " ", RowBox[{"LX", "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[Kappa]", " ", RowBox[{ SuperscriptBox["LX", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}], "-", FractionBox[ RowBox[{"\[Kappa]", " ", RowBox[{"LX", "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["X", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}], RowBox[{"4", " ", RowBox[{"X", "[", "y", "]"}]}]], "-", FractionBox[ RowBox[{"3", " ", "\[Kappa]", " ", RowBox[{"LX", "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Phi]", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], "2"]}], RowBox[{"8", " ", RowBox[{"\[Gamma]", "[", "y", "]"}]}]], "+", FractionBox[ RowBox[{ RowBox[{ SuperscriptBox["A", "\[Prime]", MultilineFunction->None], "[", "y", "]"}], " ", RowBox[{ SuperscriptBox["\[Gamma]", "\[Prime]\[Prime]", MultilineFunction->None], "[", "y", "]"}]}], RowBox[{"2", " ", RowBox[{"\[Gamma]", "[", "y", "]"}]}]]}]}], "}"}], "}"}]], "Output", CellChangeTimes->{{3.846924380266199*^9, 3.8469244203268776`*^9}, 3.8469244934435906`*^9, {3.8469245385350246`*^9, 3.8469246982106695`*^9}, { 3.8469247571176376`*^9, 3.8469247985692005`*^9}, {3.846924933864542*^9, 3.846924954645668*^9}, {3.846925001713662*^9, 3.8469250083010693`*^9}, 3.8469368919713993`*^9}, CellLabel-> "Out[107]=",ExpressionUUID->"38592c01-bd79-47fa-a4b3-9893b3ce1633"] }, Open ]] }, Open ]] }, Open ]] }, Open ]] }, WindowSize->{1148, 739}, WindowMargins->{{6, Automatic}, {Automatic, 0}}, Magnification:>1.5 Inherited, FrontEndVersion->"12.0 for Mac OS X x86 (64-bit) (2019\:5e744\:67088\:65e5)", StyleDefinitions->"Default.nb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[580, 22, 285, 4, 146, "Title",ExpressionUUID->"048a9efa-fda6-437e-938f-2056a9acf573"], Cell[868, 28, 326, 6, 79, "Subtitle",ExpressionUUID->"db60f79e-ecf6-48bf-bccf-9dd8704ac7b0"], Cell[CellGroupData[{ Cell[1219, 38, 649, 17, 105, "Section",ExpressionUUID->"d9cfcc99-1bce-4f5f-bb24-3d7e3239aaf1"], Cell[CellGroupData[{ Cell[1893, 59, 9691, 233, 922, "Input",ExpressionUUID->"0a993130-ec43-453d-8d24-485d550e8688"], Cell[11587, 294, 350, 6, 52, "Output",ExpressionUUID->"371c3ef6-51da-4e4e-a177-911d45cf02fd"], Cell[11940, 302, 1049, 29, 98, "Output",ExpressionUUID->"0d89264f-3e10-44bc-bfdc-06e4e7336277"], Cell[12992, 333, 1098, 31, 98, "Output",ExpressionUUID->"6deebb5a-5b47-44f7-9257-5571788d888d"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[14139, 370, 730, 20, 162, "Section",ExpressionUUID->"3c5553cb-5657-4e41-bafa-9e24cce448ad"], Cell[14872, 392, 1181, 34, 95, "Text",ExpressionUUID->"57a23c0e-84ae-40e8-b31d-696ddd08e3bf"], Cell[16056, 428, 56504, 1378, 4833, "Input",ExpressionUUID->"04341ae6-822b-4813-8b7b-6783a6645511"] }, Open ]], Cell[CellGroupData[{ Cell[72597, 1811, 251, 4, 101, "Section",ExpressionUUID->"0c328a02-c72a-4f12-a3f5-b8001193115c"], Cell[CellGroupData[{ Cell[72873, 1819, 342, 7, 122, "Subsection",ExpressionUUID->"ccfa7d39-6019-4f5e-a6ed-9f2fdc68effa"], Cell[CellGroupData[{ Cell[73240, 1830, 5110, 146, 431, "Input",ExpressionUUID->"76795ede-65f5-42c6-a8b8-e314498ea8bf"], Cell[78353, 1978, 1053, 31, 52, "Output",ExpressionUUID->"c7baaa98-357d-45fc-b8d6-836694d7e877"], Cell[79409, 2011, 933, 26, 52, "Output",ExpressionUUID->"b87a90f8-3495-439c-9bf8-1eb153cdd037"], Cell[80345, 2039, 1004, 27, 52, "Output",ExpressionUUID->"e224112a-b2e8-49bf-996d-cc5d1e83534b"], Cell[81352, 2068, 1775, 54, 102, "Output",ExpressionUUID->"41dc7e55-782d-4388-8a8a-651110fc39ba"], Cell[83130, 2124, 2058, 62, 102, "Output",ExpressionUUID->"4e6a965e-2d05-4e17-8aee-8a4f5d61e580"], Cell[85191, 2188, 348, 6, 52, "Output",ExpressionUUID->"29590d21-ba84-4df8-9231-307da7bfb7f3"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[85588, 2200, 632, 14, 122, "Subsection",ExpressionUUID->"e1f64bd0-b553-4f16-820c-97047ca5da0b"], Cell[86223, 2216, 5224, 146, 330, "Input",ExpressionUUID->"1057bb76-da6c-4e99-a02c-1238eb0a6ae6"], Cell[91450, 2364, 680, 14, 53, "Text",ExpressionUUID->"ab813aab-30c1-4478-802d-57660cafb8ee"], Cell[CellGroupData[{ Cell[92155, 2382, 6725, 177, 586, "Input",ExpressionUUID->"d49bd028-011e-454f-acca-906028ce90fb"], Cell[98883, 2561, 5607, 184, 226, "Output",ExpressionUUID->"feadc30d-4ca0-49a1-8087-4658d68cff7d"], Cell[104493, 2747, 7653, 252, 404, "Output",ExpressionUUID->"b189ac00-1a7c-4b6c-a684-1f49f42df9a3"], Cell[112149, 3001, 5965, 186, 363, "Output",ExpressionUUID->"9aeff4b2-c180-45df-9770-6402c61b5cd2"], Cell[118117, 3189, 2406, 74, 118, "Output",ExpressionUUID->"a25223a6-88a0-4b07-a43c-980711d32562"], Cell[120526, 3265, 275, 5, 52, "Output",ExpressionUUID->"41f9be70-98b7-4ec6-85eb-904b2fd27076"] }, Open ]], Cell[120816, 3273, 789, 12, 122, "Text",ExpressionUUID->"d0441159-fd68-4b4e-865d-22fa2d628f6e"], Cell[121608, 3287, 7883, 222, 417, "Input",ExpressionUUID->"30acc87d-6a59-4182-97bb-d26c65e51018"] }, Open ]], Cell[CellGroupData[{ Cell[129528, 3514, 233, 4, 81, "Subsection",ExpressionUUID->"444c7f84-13f2-4f2b-8c0d-e8162ddf0c05"], Cell[129764, 3520, 425, 7, 88, "Text",ExpressionUUID->"934e3e18-13bd-48ba-b4fc-489b10626242"], Cell[CellGroupData[{ Cell[130214, 3531, 5783, 184, 417, "Input",ExpressionUUID->"ca60fdd2-0438-4536-aa37-8d3fb89fe137"], Cell[136000, 3717, 3553, 110, 206, "Output",ExpressionUUID->"59ff5e0e-b6fc-4800-abd9-83a25197741d"] }, Open ]], Cell[139568, 3830, 321, 6, 53, "Text",ExpressionUUID->"a2f7ab39-7fd0-439d-b09d-ee2f53e58c64"], Cell[CellGroupData[{ Cell[139914, 3840, 765, 21, 104, "Input",ExpressionUUID->"c75aaf42-08d2-431c-bc5a-0c4f851491f7"], Cell[140682, 3863, 2304, 74, 103, "Output",ExpressionUUID->"3a58ebe6-3ed0-466a-b7b6-4714ef9f660c"], Cell[142989, 3939, 1131, 35, 68, "Output",ExpressionUUID->"894c4dc4-7984-4b2a-a8f5-977f2134f539"] }, Open ]], Cell[144135, 3977, 246, 5, 53, "Text",ExpressionUUID->"f15a5067-7d19-415a-9490-b6d28603770f"], Cell[CellGroupData[{ Cell[144406, 3986, 4226, 141, 331, "Input",ExpressionUUID->"bb92428d-1b7d-4c95-9431-064a2d522804"], Cell[148635, 4129, 780, 20, 52, "Output",ExpressionUUID->"a1465e1b-3ad5-4333-9a1d-951bca8b63a9"], Cell[149418, 4151, 750, 19, 52, "Output",ExpressionUUID->"065b0754-ad43-48f7-98ef-aa816e02ba7c"], Cell[150171, 4172, 879, 23, 52, "Output",ExpressionUUID->"98c417ee-aa78-41a7-9421-793074d118de"], Cell[151053, 4197, 1485, 40, 69, "Output",ExpressionUUID->"bb2aef12-5b85-418e-83ff-383f3948b1cc"], Cell[152541, 4239, 475, 8, 52, "Output",ExpressionUUID->"6f27c1d1-fee5-4e54-92cd-315aadeaac95"] }, Open ]], Cell[153031, 4250, 1499, 45, 118, "Text",ExpressionUUID->"41b51b87-52a1-4f95-ba58-588b476c4173"] }, Open ]], Cell[CellGroupData[{ Cell[154567, 4300, 265, 4, 81, "Subsection",ExpressionUUID->"5e81776e-c7e1-4eab-ad92-de65d0d40602"], Cell[154835, 4306, 286, 5, 53, "Text",ExpressionUUID->"b16b2209-2d09-402e-8cb9-1f940385b43b"], Cell[CellGroupData[{ Cell[155146, 4315, 4948, 149, 348, "Input",ExpressionUUID->"bb0878cd-6f17-4ab6-952d-e724c03c8220"], Cell[160097, 4466, 3172, 97, 133, "Output",ExpressionUUID->"691533b0-997c-4c70-a99a-81e139b12b7a"] }, Open ]], Cell[163284, 4566, 333, 6, 53, "Text",ExpressionUUID->"e0ce7fb4-d2c0-43e8-bf84-5fb9ddf716b9"], Cell[CellGroupData[{ Cell[163642, 4576, 3594, 98, 240, "Input",ExpressionUUID->"10cf6049-52ee-4dfa-a638-39333348daba"], Cell[167239, 4676, 572, 16, 52, "Output",ExpressionUUID->"efd12725-6413-45b5-a5b2-3d95f796dd73"], Cell[167814, 4694, 680, 19, 52, "Output",ExpressionUUID->"7bd94b83-509e-4de3-a191-644d23c6a96a"], Cell[168497, 4715, 2142, 66, 102, "Output",ExpressionUUID->"51547ab0-9a23-4143-a553-22c6faa2557d"], Cell[170642, 4783, 1153, 35, 52, "Output",ExpressionUUID->"8b84feec-9a51-4e0a-a502-1c504c516d65"] }, Open ]], Cell[171810, 4821, 1547, 46, 113, "Text",ExpressionUUID->"a4c075c7-4d95-4a39-85fd-ff21929fbc36"], Cell[173360, 4869, 3102, 87, 200, "Text",ExpressionUUID->"62d39f80-40e3-4aa9-9471-dfe1230b319a"] }, Open ]], Cell[CellGroupData[{ Cell[176499, 4961, 326, 5, 81, "Subsection",ExpressionUUID->"267695a6-ac38-451c-9baf-729cb97b1f20"], Cell[CellGroupData[{ Cell[176850, 4970, 1546, 47, 124, "Input",ExpressionUUID->"b8bb11b9-3ec7-4310-8f77-b5ffad686401"], Cell[178399, 5019, 846, 25, 82, "Output",ExpressionUUID->"038d10fc-ae84-49c1-bdbd-d3805e86e04c"], Cell[179248, 5046, 650, 20, 77, "Output",ExpressionUUID->"688488dc-5f15-415d-9921-01904f658590"] }, Open ]], Cell[CellGroupData[{ Cell[179935, 5071, 10830, 318, 775, "Input",ExpressionUUID->"80f05479-eba1-4a8f-bd6b-15298a641fe0"], Cell[190768, 5391, 7261, 224, 374, "Output",ExpressionUUID->"1014852e-27ee-4dc5-9c26-3aa8de3a7479"], Cell[198032, 5617, 616, 9, 52, "Output",ExpressionUUID->"e47d885a-031b-4d79-9b72-a314b2aa8c46"] }, Open ]], Cell[198663, 5629, 4275, 119, 257, "Text",ExpressionUUID->"779ceba9-df8d-4783-aeb4-8ea427796e87"] }, Open ]], Cell[CellGroupData[{ Cell[202975, 5753, 388, 6, 81, "Subsection",ExpressionUUID->"e296d98d-34f2-433b-8a56-ed993d47d732"], Cell[203366, 5761, 1305, 34, 128, "Text",ExpressionUUID->"ea16d7d6-0372-48ff-983d-56defd21c0a5"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[204720, 5801, 313, 5, 101, "Section",ExpressionUUID->"27d274cf-1ed5-4637-b5d7-d0e5e2c2397c"], Cell[205036, 5808, 4014, 108, 162, "Text",ExpressionUUID->"3fa0bd38-3a7e-4ce2-b1da-24833d99f37c"], Cell[209053, 5918, 11589, 320, 703, "Input",ExpressionUUID->"1ad75477-1e91-4a6a-b41b-184d97e88690"], Cell[CellGroupData[{ Cell[220667, 6242, 5802, 172, 537, "Input",ExpressionUUID->"af0c0bc6-5a3a-4a79-b949-7d7469cb1241"], Cell[226472, 6416, 717, 11, 69, "Output",ExpressionUUID->"cb4d10ef-ebde-4892-9869-33383862e0ad"], Cell[227192, 6429, 6354, 184, 332, "Output",ExpressionUUID->"d67388b0-e1ed-43cb-b322-6c0877b22e6a"] }, Open ]], Cell[233561, 6616, 6899, 196, 298, "Text",ExpressionUUID->"f1ac0dc3-da91-4786-89a7-b44be1883423"] }, Open ]], Cell[CellGroupData[{ Cell[240497, 6817, 248, 6, 158, "Section",ExpressionUUID->"aa679214-7fed-48a8-831f-1977f17c1b2f"], Cell[240748, 6825, 806, 23, 89, "Text",ExpressionUUID->"3a4eb12e-fae4-4724-97fd-63a432cddf50"], Cell[241557, 6850, 3724, 118, 243, "Text",ExpressionUUID->"d3ce9363-9fae-410d-9ab7-efd61f6d2751"], Cell[245284, 6970, 1017, 28, 136, "Text",ExpressionUUID->"21ad36ee-8500-4596-9663-31f74998c1f9"], Cell[246304, 7000, 6861, 205, 357, "Text",ExpressionUUID->"673f7390-1948-431e-aa95-7eb0320a1640"], Cell[CellGroupData[{ Cell[253190, 7209, 11251, 325, 503, "Input",ExpressionUUID->"9830eccc-20cd-4a96-b00d-e123f04dd525"], Cell[264444, 7536, 7588, 246, 388, "Output",ExpressionUUID->"3bc7241b-249d-4777-aeee-dbb7223b3395"] }, Open ]], Cell[272047, 7785, 20118, 573, 778, "Text",ExpressionUUID->"85443fb4-d1c0-43d8-8b67-eefc35643578"] }, Open ]], Cell[CellGroupData[{ Cell[292202, 8363, 228, 4, 101, "Section",ExpressionUUID->"c0256a33-670a-41ec-b7a8-99d0b59e1565"], Cell[292433, 8369, 223, 3, 53, "Text",ExpressionUUID->"8f5931f8-1ed2-40a9-ae13-6b47bdaccf8a"], Cell[292659, 8374, 5175, 151, 242, "Input",ExpressionUUID->"e830d19d-98fa-4124-948c-2f5cb04372f8"], Cell[297837, 8527, 430, 8, 88, "Text",ExpressionUUID->"88702ab5-6a8d-4211-8851-17fca7cce90e"], Cell[CellGroupData[{ Cell[298292, 8539, 895, 28, 159, "Input",ExpressionUUID->"83208392-a519-4396-9f01-a1d3fa0a411c"], Cell[299190, 8569, 4509, 143, 139, "Output",ExpressionUUID->"0dc18011-daf5-4ac0-87e6-0a97101f3cc5"] }, Open ]], Cell[303714, 8715, 2014, 56, 89, "Text",ExpressionUUID->"ff31931a-01c1-483b-836d-a6ebc7510591"], Cell[CellGroupData[{ Cell[305753, 8775, 15505, 414, 695, "Input",ExpressionUUID->"ed7aaf9d-3bb0-479c-b713-89837cd39cd9"], Cell[321261, 9191, 203, 4, 52, "Output",ExpressionUUID->"21bec774-cd6b-478e-9469-55fd92624e06"] }, Open ]], Cell[321479, 9198, 7332, 228, 548, "Text",ExpressionUUID->"edd46b27-7064-4fa3-983f-137ce22e0e58"], Cell[CellGroupData[{ Cell[328836, 9430, 228, 7, 81, "Subsection",ExpressionUUID->"c79b960c-f914-41a8-a8ba-79ebaa5cca3f"], Cell[329067, 9439, 1110, 29, 89, "Text",ExpressionUUID->"a2fbed63-8c7c-42b8-b947-dfb856ef2c62"], Cell[CellGroupData[{ Cell[330202, 9472, 22686, 687, 1231, "Input",ExpressionUUID->"f9752b07-30fd-4d20-892f-54c171977dd7"], Cell[352891, 10161, 1356, 35, 73, "Output",ExpressionUUID->"481fd019-1c6f-463e-8ff5-0cf186d3afdd"], Cell[354250, 10198, 1544, 40, 73, "Output",ExpressionUUID->"fe38181b-7fd1-4b7b-b95b-17b750e0c2f3"], Cell[355797, 10240, 4115, 115, 141, "Output",ExpressionUUID->"24b6fe8a-9d81-4fcb-a85c-8dac00e9a70f"], Cell[359915, 10357, 1605, 43, 73, "Output",ExpressionUUID->"8c44581e-f205-484b-9451-9a18b2f03055"], Cell[361523, 10402, 3860, 108, 138, "Output",ExpressionUUID->"84519aaf-d21c-4ccf-a1d9-c462c10c3eac"], Cell[365386, 10512, 3933, 120, 141, "Output",ExpressionUUID->"ae6607c9-c32e-4378-aeec-479af2010628"], Cell[369322, 10634, 3515, 97, 139, "Output",ExpressionUUID->"38592c01-bd79-47fa-a4b3-9893b3ce1633"] }, Open ]] }, Open ]] }, Open ]] }, Open ]] } ] *)