
Computer Architecture

Lecture 03 – Pipeline and hazard
(Instruction level Parallelism)

Pengju Ren
Institute of Artificial Intelligence and Robotics

Xi’an Jiaotong University

http://gr.xjtu.edu.cn/web/pengjuren

Pengju Ren@XJTU 2023

Agenda

Pipeline and hazards:
— Pipeline Basics
— Structural Hazards
— Data Hazards
— Control Hazards

2

Pengju Ren@XJTU 2023

“Iron Law” of Processor Performance

3

 Instructions per program depends on source code,
compiler technology, and ISA

 Cycles per instructions (CPI) depends on ISA and
microarchitecture

 Time per cycle depends upon the microarchitecture and
base technology

Workload of a Program (how
many line of codes)

Algorithm\Compiler\ISA Extension

CPI

Microarchitecture

Clock Freq

manufacture
Process (e.g. 7nm,

28nm)

Pengju Ren@XJTU 2023

Pipeline v.s Unpipeline (Timing analysis)

4

Unpipelined

n-stage

pipeline

Execution Time Freq

Unpipelined D 1/D

n-stage Pipeline D/N+S 1/(D/n+S)

A

H

Q1

Q8

ENB

Reg
A

H

Q1

Q8

ENB

Reg
A

H

Q1

Q8

ENB

Reg
A

H

Q1

Q8

ENB

Reg

D

D /n D /n

S tage1 S tage2 S tage n

SSSS

Pengju Ren@XJTU 2023

Pipeline v.s Unpipeline (Area analysis)

5

Unpipelined

n-stage

pipeline

Area Cost Cost/Performance

Unpipelined G G*D

n-stage Pipeline G+n*L (G+n*L)*(D/n+S)

A

H

Q1

Q8

ENB

Reg
A

H

Q1

Q8

ENB

Reg
A

H

Q1

Q8

ENB

Reg
A

H

Q1

Q8

ENB

Reg

G

G /n G /n

S tage1 S tage2 S tage n

L L L L

GD/n+SL*n+LD+GS

𝒅(
𝑮𝑫
𝒏

+ 𝑺𝑳 ∗ 𝒏 + 𝑳𝑫 + 𝑮𝑺)

𝒅𝒏
= 𝑺𝑳 −

𝑮𝑫

𝒏𝟐
𝒏 =

𝑮𝑫

𝑳𝑺

Pengju Ren@XJTU 2023

More about Pipeline

6

• The Clock Period is depended on the longest stage of the
pipeline

• Dependence among different stages raise challenges for
high efficient pipeline (e.g., RAW, WAW, WAR)

A

H

Q1

Q8

ENB

Reg
A

H

Q1

Q8

ENB

Reg
A

H

Q1

Q8

ENB

Reg

I-cache D ecode

Fetch
D ecode&
R egfile
read

L L L

A

H

Q1

Q8

ENB

Reg
A

H

Q1

Q8

ENB

Reg

A LU D -cache

E xecution M E M

L L

W rite
B ack

The classical 5-stages Pipeline of RISC-V

Pengju Ren@XJTU 2023

Clock Frequency of Pipeline

7

W rite
B ack

A

H

Q1

Q8

ENB

Reg
A

H

Q1

Q8

ENB

Reg
A

H

Q1

Q8

ENB

Reg

I-cache D ecode

Fetch

D ecode&
R egfile
read

L L L

A

H

Q1

Q8

ENB

Reg
A

H

Q1

Q8

ENB

Reg

A LU D -cache

E xecution M E M

L L

7ns11ns 5ns 10ns 3ns

Unpipeline: T = 11+7+5+10+3-0.5*5 = 33.5ns

Pipeline: T = max(11, 7, 5, 10, 3) = 11ns

NOTEs: Assuming the time of the Reg operations of each stage is 0.5ns

Pengju Ren@XJTU 2023

A

H

Q1

Q8

ENB

Reg
A

H

Q1

Q8

ENB

Reg

I-cache D ecode

Fetch
D ecode& R egfile read + E xecution

L L

A

H

Q1

Q8

ENB

Reg

A LU D -cache

M E M + W rite B ack

L

12ns11ns 13ns

Merge multiple stages into one
(Shallow pipeline)

8

Pipeline: T = max(11,12,13) = 13ns

Area Cost Freq

5-stages G+5*L 1/11ns=90.9Mhz

3-stages G+3*L 1/13ns=76.9Mhz

Pengju Ren@XJTU 2023

Divide one stage into multiple stages
(Deeper pipeline)

9

Pipeline: T = max(5.5,5.5,7,5,5,3) = 7ns

Area Cost Freq

5-stages G+5*L 1/11ns=90.9Mhz

7-stages G+7*L 1/7ns=142.8Mhz

Pengju Ren@XJTU 2023

An Ideal Pipeline

10

 All instructions go through the same stages
 No sharing of resources between any two stages
 Propagation delay through all pipeline stages is equal
 Scheduling of a transaction entering the pipeline is not affected

by the transactions in other stages
 These conditions generally hold for industry assembly lines, but

instructions depend on each other causing various hazards

Pengju Ren@XJTU 2023

An Ideal Pipeline

11

 All objects go through the same stages
 No sharing of resources between any two stages
 Propagation delay through all pipeline stages is equal
 Scheduling of a transaction entering the pipeline is not affected

by the transactions in other stages
 These conditions generally hold for industry assembly lines, but

instructions depend on each other causing various hazards

Pengju Ren@XJTU 2023

Instructions Interact With Each Other in Pipeline

12

 Structural Hazard: An instruction in the pipeline needs a
resource being used by another instruction in the pipeline

 Data Hazard: An instruction depends on a data value
produced by an earlier instruction

 Control Hazard: Whether or not an instruction should
be executed depends on a control decision made by an
earlier instruction (branches, interrupts)Pengju Ren@XJTU 2023

Overview of Structural Hazard

13

 Structural hazards occur when two instructions need the same
hardware resource at the same time

 Approaches to resolving structural hazards
–ௗSchedule: Programmer explicitly avoids scheduling
instructions that would create structural hazards
–ௗStall: Hardware includes control logic that stalls until earlier
instruction is no longer using contended resource
–ௗDuplicate: Add more hardware to design so that each
instruction can access independent resources at the same timePengju Ren@XJTU 2023

Example of Structural Hazard: Unified Memory

14

IMEMIMEM

ALU

+4

DMEMDMEM
Branch
Comp.

Reg[]Reg[]

AddrA

AddrB

DataA

AddrD

DataB

DataD

Addr

DataW
DataR

1

0
aluX

pcF+4

+4pcDpcF

pcX
pcM

rs1X

rs2X

aluM

rs2MimmX

Fetch(F) Decode(D) Execute(X) Mem(M) Write
Back(W)

IR.F/D

IR.D/X IR.X/M IR.M/W

Imm.

Pengju Ren@XJTU 2023

Example of Structural Hazard: Unified Memory

15

I/D MEM

ALU

+4

Branch
Comp.

Reg[]Reg[]

AddrA

AddrB

DataA

AddrD

DataB

DataD

Addr

DataW

DataR

1

0
aluX

pcF+4

+4pcDpcF

pcX
pcM

rs1X

rs2X

aluM

rs2MimmX

instM

IR.F/D

IR.D/X IR.X/M IR.M/W

Imm.

Pengju Ren@XJTU 2023

16

time t0 t1 t2 t3 t4 t5 t6 t7 t8

LW F D X M W

ADD F D E M W

ADD F D E M W

SUB F D E M W

ST F D E M W

Example of Structural Hazard: Unified Memory

I/D Mem can not be R/W at the same time, is component conflict.
Pengju Ren@XJTU 2023

Example of Structural Hazard: Two Cycle Mem

17

time t0 t1 t2 t3 t4 t5 t6 t7 t8

LW F D X M0 M1 W

ADD X1，X2，X3 F D E M0 M1 W

LW F D E M0 M1 W

ST F D E M0 M1 W
A scoreboard records the resource occupation can assist to detect structural hazard

IMEMIMEM

ALU

+4

DMEMDMEM
Branch
Comp.

Reg[]Reg[]

AddrA

AddrB

DataA

AddrD

DataB

DataD

Addr

DataW
DataR

1

0
aluX

pcF+4

+4pcDpcF

pcX
pcM

rs1X

rs2X

aluM

rs2MimmX

Fetch(F) Decode(D) Execute(X) Mem(M0) Write
Back(W)

Mem(M1)

IR.F/D

IR.D/X IR.X/M IR.M/W

Imm.

Pengju Ren@XJTU 2023

Agenda

Pipeline and hazards:
— Pipeline Basics
— Structural Hazards
— Data Hazards
— Control Hazards

18

Pengju Ren@XJTU 2023

Overview of Data Hazards

19

 Data hazards occur when one instruction depends on a data
value produced by a preceding instruction still in the pipeline

 Approaches to resolving data hazards
–ௗ Stall: Wait for the result to be available by freezing earlier
pipeline stages
–ௗ Bypass: Route data as soon as possible after it is calculated
to the earlier pipeline stage
–ௗ Speculate:

Two cases:
Guessed correctly -> do nothing
Guessed incorrectly -> kill and restart
Pengju Ren@XJTU 2023

Example of Data Hazards

20

X1 X2 + 10 (ADDI X1, X2, #10)

X4 X1 + 17 (ADDI X4, X1, #17)

time t0 t1 t2 t3 t4

ADDI X1, X2, #10 F D X M W

ADDI X4, X1, #17 F D E M

X1=X2+10X2: X1 is stale

IMEMIMEM

ALU

+4

DMEMDMEM
Branch
Comp.

Reg[]Reg[]

AddrA

AddrB

DataA

AddrD

DataB

DataD

Addr

DataW
DataR

1

0
aluX

pcF+4

+4pcDpcF

pcX
pcM

rs1X

rs2X

aluM

rs2MimmX

F D X M W

IR.F/D

IR.D/X IR.X/M IR.M/W

Imm.

Pengju Ren@XJTU 2023

Resolving Data Hazards by Stalling

21

…
X1 X2 + 10
X4 X1 + 17
…

IMEMIMEM

ALU

+4

DMEMDMEM
Branch
Comp.

Reg[]Reg[]

AddrA

AddrB

DataA

AddrD

DataB

DataD

Addr

DataW
DataR

1

0
aluX

pcF+4

+4pcDpcF

pcX
pcM

rs1X

rs2X

aluM

rs2MimmX

F D X M W

IR.F/D

IR.D/X IR.X/M IR.M/W

Imm.

Pengju Ren@XJTU 2023

Resolving Data Hazards by Stalling

22

…
X1 X2 + 10
X4 X1 + 17
…

IMEMIMEM

ALU

+4

DMEMDMEM
Branch
Comp.

Reg[]Reg[]

AddrA

AddrB

DataA

AddrD

DataB

DataD

Addr

DataW
DataR

1

0
aluX

pcF+4

+4pcDpcF

pcX
pcM

rs1X

rs2X

aluM

rs2MimmX

F D X M W

nop

Stall Control Logic

IR.F/D

IR.D/X IR.X/M IR.M/W

Imm.

Pengju Ren@XJTU 2023

23

Stalled Stages and Pipeline Bubbles

23

t0 t1 t2 t3 t4 t5 t6 t7 …

(ଵ X1<-(X2)+10 ଵ ଵ ଵ ଵ ଵ

(ଶ X4<-(X1)+17 ଶ ଶ ଶ ଶ ଶ ଶ ଶ

(ଷ ଷ ଷ ଷ ଷ ଷ ଷ ଷ

(ସ Stall stages

t0 t1 t2 t3 t4 t5 t6 t7 …

IF ଵ ଶ ଷ ଷ ଷ ସ ହ

ID ଵ ଶ ଶ ଶ ଷ ସ ହ

EX ଵ nop nop ଶ ଷ ସ ହ

MA ଵ nop nop ଶ ଷ ସ

WB ଵ nop nop ଶ ଷ ସ

nop => pipeline bubble…
X1 X2 + 10
X4 X1 + 17
…

Pengju Ren@XJTU 2023

24

IMEMIMEM

ALU

+4

DMEMDMEM

Branch
Comp.

Reg[]Reg[]

AddrA

AddrB

DataA

AddrD

DataB

DataD

Addr

DataW
DataR

1

0
aluX

pcF+4

+4pcDpcF

pcX
pcM

rs1X

rs2X

aluM

rs2MimmX

F D X M W

nop

IR.F/D
IR.D/X

IR.X/M IR.M/W

Imm.

IR
.F

/D
.r

s1
&

rs
2

Stall Control Logic

Compare the source registers of the instruction at IR.F/D with the destination
register of the instruction at IR.D/X (uncommitted instructions).

Stall Control Logic

IR.D/X.rdPengju Ren@XJTU 2023

25

Stall Control Logic(Ignoring jumps and branches)

IMEMIMEM

ALU

+4

DMEMDMEM

Branch
Comp.

Reg[]Reg[]

AddrA

AddrB

DataA

AddrD

DataB

DataD

Addr

DataW
DataR

1

0
aluX

pcF+4

+4pcDpcF

pcX
pcM

rs1X

rs2X

aluM

rs2MimmX

F D X M W

nop

IR.D/X.rd

IR.F/D
IR.D/X

IR.X/M IR.M/W

Imm.

IR
.F

/D
.r

s1
&

rs
2

IR.X/M.rd
Stall Control Logic

Why do not compare IR.F/D.rs1 and rs2 with IR.M/W.rd?

Pengju Ren@XJTU 2023

26

Should we always stall if the rs field matches some rd?
not every instruction writes a register => we
not every instruction reads a register => re

Stall Control Logic(Ignoring jumps and branches)

IMEMIMEM

ALU

+4

DMEMDMEM

Branch
Comp.

Reg[]Reg[]

AddrA

AddrB

DataA

AddrD

DataB

DataD

Addr

DataW
DataR

1

0
aluX

pcF+4

+4pcDpcF

pcX
pcM

rs1X

rs2X

aluM

rs2MimmX

F D X M W

nop

IR.D/X.rd

IR.F/D
IR.D/X

IR.X/M IR.M/W

Imm.

IR
.F

/D
.r

s1
&

rs
2

IR.X/M.rd
Stall Control LogicPengju Ren@XJTU 2023

Source & Destination Registers (RISC-V)

27

Inst-Type Funct Source(s) Destination Result ready
R rd <- (rs1) func (rs2) rs1,rs2 rd E(X)-stage

I
rd <- (rs1) op immediate rs1 rd E(X)-stage
lw、lb、load rd M-stage
jalr rd M-stage

S M[(rs1)+immediate] <- (rs2) rs1,rs2 - -
SB cond (rs1, rs2):

 True: PC <- PC + immediate
 False: PC <- PC + 4

rs1,rs2 - -

U LUI rd <- Imm.gen(immediate) rd E(X)-stage
UJ rd <- PC + 4, PC <- PC

+immediate
rd M-stage

Pengju Ren@XJTU 2023

Deriving the Stall Signal

28

R,I,U,J rd≠0

Others rd=0

R,I,U,J we=on

Others we=off

R,I,S,B re1=on

Others re1=off

R,S,B re2=on

Others re2=off

This is not the whole story!

Stall =((IR.F/D.rs1==IR.D/X.rd)IR.D/X.we
+ (IR.F/D.rs1==IR.X/M.rd)IR.X/M.we) IR.F/D.re1
or

((IR.F/D.rs2==IR.D/X.rd)IR.D/X.we
+ (IR.F/D.rs2==IR.X/M.rd)IR.X/M.we) IR.F/D.re2Pengju Ren@XJTU 2023

Data Hazards due to Loads & Stores

29Is there any possible data hazard in this instruction sequence?

What if (x1)+7 = (x3)+5 ?
…
M[(X1)+7] (X2)
X4 M[(X3) + 5]
…

IMEMIMEM

ALU

+4

DMEMDMEM

Branch
Comp.

Reg[]Reg[]

AddrA

AddrB

DataA

AddrD

DataB

DataD

Addr

DataW
DataR

1

0
aluX

pcF+4

+4pcDpcF

pcX
pcM

rs1X

rs2X

aluM

rs2MimmX

F D X M W

nop

IR.F/D
IR.D/X

IR.X/M IR.M/W

Imm.

IR.X/M.rd
Stall Control Logic

IR.D/X.rd

IR
.F

/D
.r

s1
&

rs
2

Pengju Ren@XJTU 2023

Data Hazards Due to Loads and Stores

30

 Example instruction sequence：

 What if Regs[X1]+7 == Regs[X3]+5 ?
— Writing and reading to/from the same address
— Hazard is avoided because our memory system completes
writes in a single cycle (Actually it is not)
— More realistic memory system will require more careful
handling of data hazards due to loads and stores（More on
this later in the course)

M[(X1)+7] (X2)
X4 M[(X3) + 5]

Pengju Ren@XJTU 2023

Overview of Data Hazards

31

 Data hazards occur when one instruction depends on a data
value produced by a preceding instruction still in the pipeline

 Approaches to resolving data hazards
–ௗ Stall: Wait for the result to be available by freezing earlier
pipeline stages
–ௗ Bypass: Route data as soon as possible after it is calculated
to the earlier pipeline stage
–ௗ Speculate:

Two cases:
Guessed correctly -> do nothing
Guessed incorrectly -> kill and restartPengju Ren@XJTU 2023

Feedback to Resolve Hazards

32

 Later stages provide dependence information to earlier
stages which can stall (or kill) instructions

Pengju Ren@XJTU 2023

Feedback to Resolve Hazards

33

 Later stages provide dependence information to earlier
stages which can stall (or kill) instructions

Pengju Ren@XJTU 2023

Feedback to Resolve Hazards

34

 Later stages provide dependence information to earlier
stages which can stall (or kill) instructions

Pengju Ren@XJTU 2023

Feedback to Resolve Hazards

35

 Later stages provide dependence information to earlier
stages which can stall (or kill) instructions

Pengju Ren@XJTU 2023

Feedback to Resolve Hazards

36

 Later stages provide dependence information to earlier
stages which can stall (or kill) instructions

Pengju Ren@XJTU 2023

Feedback to Resolve Hazards

37

 Later stages provide dependence information to earlier
stages which can stall (or kill) instructions

Pengju Ren@XJTU 2023

Feedback to Resolve Hazards

38

 Later stages provide dependence information to earlier
stages which can stall (or kill) instructions

Pengju Ren@XJTU 2023

Feedback to Resolve Hazards

39

 Later stages provide dependence information to earlier
stages which can stall (or kill) instructions

 Controlling a pipeline in this manner works provided the
instruction at stage i+1 can complete without any
interference from instructions in stages 1 to i

Pengju Ren@XJTU 2023

40

Bypassing

t0 t1 t2 t3 t4 t5 t6 t7 …

(ଵ X1<-(X2)+10 ଵ ଵ ଵ ଵ ଵ

(ଶ X4<-(X1)+17 ଶ ଶ ଶ ଶ ଶ ଶ ଶ

(ଷ ଷ ଷ ଷ ଷ ଷ ଷ ଷ

(ସ Stall stages

Each stall or kill introduces a bubble => CPI > 1

When is data actually available? At Execute Stage

Pengju Ren@XJTU 2023

41

Bypassing

t0 t1 t2 t3 t4 t5 t6 t7 …

(ଵ X1<-(X2)+10 ଵ ଵ ଵ ଵ ଵ

(ଶ X4<-(X1)+17 ଶ ଶ ଶ ଶ ଶ

(ଷ ଷ ଷ ଷ ଷ ଷ

(ସ ସ ସ ସ ସ ସ

Each stall or kill introduces a bubble => CPI > 1

When is data actually available? At Execute Stage

A new datapath, i.e., a bypass (or feedback), can get the data from
the output of the ALU to its input

t0 t1 t2 t3 t4 t5 t6 t7 …

(ଵ X1<-(X2)+10 ଵ ଵ ଵ ଵ ଵ

(ଶ X4<-(X1)+17 ଶ ଶ ଶ ଶ ଶ ଶ ଶ

(ଷ ଷ ଷ ଷ ଷ ଷ ଷ ଷ

(ସ Stall stages

Pengju Ren@XJTU 2023

Adding a Bypass

42

IMEMIMEM

ALU

+4

DMEMDMEM
Branch
Comp.

Reg[]Reg[]

AddrA

AddrB

DataA

AddrD

DataB

DataD

Addr

DataW
DataR

1

0
aluX

pcF+4

+4pcDpcF

pcX
pcM

rs1X

rs2X

aluM

rs2MimmX

F D X M W

nop

Stall Control Logic

IR.F/D

IR.D/X IR.X/M IR.M/W

Imm.

…
X1 X2 + 10
X4 X1 + 17
…

Pengju Ren@XJTU 2023

Adding a Bypass

43

IMEMIMEM

ALU

+4

DMEMDMEM
Branch
Comp.

Reg[]Reg[]

AddrA

AddrB

DataA

AddrD

DataB

DataD

Addr

DataW
DataR

1

0
aluX

pcF+4

+4pcDpcF

pcX
pcM

rs1X

rs2X

aluM

rs2MimmX

F D X M W

nop

Stall Control Logic

IR.F/D

IR.D/X IR.X/M IR.M/W

Imm.

…
X1 X2 + 10
X4 X1 + 17
…

Asrc[1:0]

00
01
1X

Is this correct ?

Pengju Ren@XJTU 2023

Adding a Bypass

44

IMEMIMEM

ALU

+4

DMEMDMEM
Branch

Comp.

Reg[]Reg[]

AddrA

AddrB

DataA

AddrD

DataB

DataD

Addr

DataW
DataR

1

0
aluX

pcF+4

+4pcDpcF

pcX
pcM

rs1X

rs2X

aluM

rs2MimmX

F D X M W

nop

Stall Control Logic

IR.F/D

IR.D/X IR.X/M IR.M/W

Imm.

…
X1 X2 + 10
BEQ comp(X1,X4)
…

Asrc[1:0]

00
01
1X

Pengju Ren@XJTU 2023

Adding a Bypass

45

IMEMIMEM

ALU

+4

DMEMDMEM
Branch

Comp.

Reg[]Reg[]

AddrA

AddrB

DataA

AddrD

DataB

DataD

Addr

DataW
DataR

1

0
aluX

pcF+4

+4pcDpcF

pcX
pcM

rs1X

rs2X

aluM

rs2MimmX

F D X M W

nop

Stall Control Logic

IR.F/D

IR.D/X IR.X/M IR.M/W

Imm.

Asrc[1:0]

00
01
1X

When does this bypass help ?
yes…

X1 X2 + 10
X4 X1 + 17
…

Pengju Ren@XJTU 2023

Adding a Bypass

46

IMEMIMEM

ALU

+4

DMEMDMEM
Branch

Comp.

Reg[]Reg[]

AddrA

AddrB

DataA

AddrD

DataB

DataD

Addr

DataW
DataR

1

0
aluX

pcF+4

+4pcDpcF

pcX
pcM

rs1X

rs2X

aluM

rs2MimmX

F D X M W

nop

Stall Control Logic

IR.F/D

IR.D/X IR.X/M IR.M/W

Imm.

Asrc[1:0]

00
01
1X

When does this bypass help ?
yes…

X1 X2 + 10
X4 X1 + 17
…

No…
X1 M[X2 + 10]
X4 X1 + 17
…

Pengju Ren@XJTU 2023

Adding a Bypass

47

IMEMIMEM

ALU

+4

DMEMDMEM
Branch

Comp.

Reg[]Reg[]

AddrA

AddrB

DataA

AddrD

DataB

DataD

Addr

DataW
DataR

1

0
aluX

pcF+4

+4pcDpcF

pcX
pcM

rs1X

rs2X

aluM

rs2MimmX

F D X M W

nop

Stall Control Logic

IR.F/D

IR.D/X IR.X/M IR.M/W

Imm.

Asrc[1:0]

00
01
1X

When does this bypass help ?
yes…

X1 X2 + 10
X4 X1 + 17
…

No…
X1 M[X2 + 10]
X4 X1 + 17
…

No…
JAL 500
X4 X1 + 17
…

Pengju Ren@XJTU 2023

48

Bypassing

Each stall or kill introduces a bubble => CPI > 1

When is data actually available? At Execute Stage

t0 t1 t2 t3 t4 t5 t6 t7 …

(ଵ X1<-(X2)+10 ଵ ଵ ଵ ଵ ଵ

(ଶ X4<-(X1)+17 ଶ ଶ ଶ ଶ ଶ ଶ ଶ

(ଷ ଷ ଷ ଷ ଷ ଷ ଷ ଷ

(ସ Stall stages

Pengju Ren@XJTU 2023

The Bypass Signal

49

R,I,U,UJ rd exist

Others rd not-exist

R,I,U,UJ we=on

Others we=off

Stall=((IR.D/X.rs1==IR.X/M.rd)IR.X/M.we
+ (IR.D/X.rs1==IR.M/W.rd)IR.M/W.we) IR.D/X.re1
or

((IR.D/X.rs2==IR.X/M.rd)IR.X/M.we
+ (IR.D/X.rs2==IR.M/W.rd)IR.M/W.we) IR.D/X.re2

Asrc = (IR.D/X.rs1==IR.X/M.rd)IR.X/M.we

Bsrc = (IR.D/X.rs2==IR.X/M.rd)IR.X/M.we

Is this correct ?
No, because only R, U and partial of I instructions can benefit from this bypass

How might we address this?
Split we into two components: we-bypass and we-stall

Pengju Ren@XJTU 2023

Recap: “load instructions” of I-type

50

Pengju Ren@XJTU 2023

Recap: JALR (R[rd] = PC+4; PC = R[rs1] + imm) of I-type

51

Pengju Ren@XJTU 2023

Adding JAL (R[rd] = PC+4; PC = PC + {imm,1b’0}) of UJ-type

52

Pengju Ren@XJTU 2023

Bypass and Stall Signals

53

Split X/M into two components: X/M , X/M

I*：I指令中的立即数操作；I**：I指令中的其它指令（如：Load和JALR）

𝑬

R，U，I*（opcode=0000011）=> on

Others => off

𝑬

I**，UJ => on

Others => off

R,I,U,UJ we=on

Others we=off

Stall =((IR.D/X.rs1==IR.X/M.rd)IR.X/M.we
+ (IR.D/X.rs1==IR.M/W.rd)IR.M/W.we) IR.D/X.re1
or

((IR.D/X.rs2==IR.X/M.rd)IR.D/X.we
+ (IR.D/X.rs2==IR.M/W.rd)IR.M/W.we) IR.D/X.re2

Asrc = (IR.D/X.rs1==IR.X/M.rd)IR.X/M.we

Bsrc = (IR.D/X.rs2==IR.X/M.rd)IR.X/M.wePengju Ren@XJTU 2023

Bypass and Stall Signals

54I*：I指令中的立即数操作；I**：I指令中的其它指令（如：Load和JALR）

𝑬

R，U，I*（opcode=0000011）=> on

Others => off

𝑬

I**，UJ => on

Others => off

R,I,U,UJ we=on

Others we=off

Stall =((IR.D/X.rs1==IR.X/M.rd)IR.X/M.we-stall
+ (IR.D/X.rs1==IR.M/W.rd)IR.M/W.we) IR.D/X.re1
or

((IR.D/X.rs2==IR.X/M.rd)IR.X/M.we-stall
+ (IR.D/X.rs2==IR.M/W.rd)IR.M/W.we) IR.D/X.re2

Asrc = (IR.D/X.rs1==IR.X/M.rd)IR.X/M.we-bypass

Bsrc = (IR.D/X.rs2==IR.X/M.rd)IR.X/M.we-bypass

Split X/M into two components: X/M , X/M

Pengju Ren@XJTU 2023

Bypass and Stall Signal

55

Deriving Bypass from the Stall Signal

IR.F/D IR.D/X IR.X/M IR.M/W

Clock i

Instruction i

IR.F/D IR.D/X IR.X/M IR.M/W

Clock i+1

Instruction iInstruction i+1

Pengju Ren@XJTU 2023

Bypass and Stall Signal

56

Deriving Bypass from the Stall Signal

Stall =((IR.D/X.rs1==IR.X/M.rd)IR.X/M.we-stall
+ (IR.D/X.rs1==IR.M/W.rd)IR.M/W.we) IR.D/X.re1
or

((IR.D/X.rs2==IR.X/M.rd)IR.X/M.we-stall
+ (IR.D/X.rs2==IR.M/W.rd)IR.M/W.we) IR.D/X.re2

Asrc = (IR.D/X.rs1==IR.X/M.rd)IR.X/M.we-bypass

Bsrc = (IR.D/X.rs2==IR.X/M.rd)IR.X/M.we-bypass

Stall =((IR.F/D.rs1==IR.D/X.rd)IR.D/X.we-stall
+ (IR.F/D.rs1==IR.X/M.rd)IR.X/M.we) IR.F/D.re1
or

((IR.F/D.rs2==IR.D/X.rd)IR.D/X.we-stall
+ (IR.F/D.rs2==IR.X/M.rd)IR.X/M.we) IR.F/D.re2

Asrc‘ = (IR.F/D.rs1==IR.D/X.rd)IR.D/X.we-bypass

Bsrc‘ = (IR.F/D.rs2==IR.D/X.rd)IR.D/X.we-bypass

Asrc‘ and Bsrc’ are generated one clock earlier than Asrc and Bsrc

Pengju Ren@XJTU 2023

Branch

Comp.

Fully Bypassed Datapath

57

IMEMIMEM

ALU

+4

DMEMDMEM

Reg[]Reg[]

AddrA

AddrB

DataA

AddrD

DataB

DataD

Addr

DataW
DataR

1

0
aluX

pcF+4

+4pcDpcF

pcX
pcM

rs1X

rs2X

aluM

rs2MimmX

F D X M W

nop

Stall and Bypass
Control Logic

IR.F/D
IR.D/X

IR.X/M IR.M/W

Imm.

Asrc[1:0]

00
01
10
11

Bsrc[1:0]

00
01
10
11

IR
.D

/X
.rs

1

IR
.D

/X
.rs

2

IR.X/M.rd

Note: Assumes data written to registers in a W-stage is readable in parallel D-stage.
Extra write data register and bypass paths required if this is not possible.

IR
.F

/D
.r

s1
&

rs
2

Asrc’
Bsrc’

Pengju Ren@XJTU 2023

Overview of Data Hazards

58

 Data hazards occur when one instruction depends on a data
value produced by a preceding instruction still in the pipeline

 Approaches to resolving data hazards
–ௗ Stall: Wait for the result to be available by freezing earlier
pipeline stages
–ௗ Bypass: Route data as soon as possible after it is calculated
to the earlier pipeline stage
–ௗ Speculate: (later in course)

Two cases:
Guessed correctly -> do nothing
Guessed incorrectly -> kill and restartPengju Ren@XJTU 2023

Agenda

Pipeline and hazards:
— Pipeline Basics
— Structural Hazards
— Data Hazards
— Control Hazards

59

Pengju Ren@XJTU 2023

Instruction to Instruction Dependence

60

 What do we need to calculate next PC?
– For Jumps

• Opcode, offset, and PC
– For Jump Register

• Opcode and register value
– For Conditional Branches

• Opcode, offset, PC, and register (for condition)
– For all others

• Opcode and PC
 In what stage do we know these?

– PC → Fetch
– Opcode, offset → Decode (or Fetch?)
– Register value → Decode
– Branch condiƟon (rs1==rs2) → Execute (or Decode?)

Pengju Ren@XJTU 2023

NextPC Calculation Bubbles

61

t0 t1 t2 t3 t4 t5 t6 t7 …

(ଵ X1<-(X2)+10 ଵ ଵ ଵ ଵ ଵ

(ଶ X4<-(X3)+17 ଶ ଶ ଶ ଶ ଶ ଶ

(ଷ ଷ ଷ ଷ ଷ ଷ ଷ

(ସ ସ ସ ସ ସ ସ

t0 t1 t2 t3 t4 t5 t6 t7 …

IF ଵ nop ଶ nop ଷ nop ସ

ID ଵ nop ଶ nop ଷ nop ସ

EX ଵ nop ଶ nop ଷ nop ସ

MA ଵ nop ଶ nop ଷ nop ସ

WB ଵ nop ଶ nop ଷ nop

nop => pipeline bubble

What’s a good guess for next PC ? PC + 4

Pengju Ren@XJTU 2023

Pipelining Jumps

62

IMEMIMEM

ALU

+4

DMEMDMEM
Branch
Comp.

Reg[]Reg[]

AddrA

AddrB

DataA

AddrD

DataB

DataD

Addr

DataW
DataR

1

0
aluX

pcF+4

+4pcDpcF

pcX
pcM

rs1X

rs2X

aluM

rs2MimmX

Fetch(F) Decode(D) Execute(X) Mem(M0) Mem(M0)

IR.F/D

IR.D/X IR.X/M IR.M/W

Imm.

I1 096 ADD

I2 100 JAL 200

I3 104 ADD

I4 -- --

I5 300 ADD

What happens on mis-speculation,
i.e., when next instruction is not PC+4 ?

Pengju Ren@XJTU 2023

Pipelining Jumps

63

IMEMIMEM

ALU

+4

DMEMDMEM
Branch
Comp.

Reg[]Reg[]

AddrA

AddrB

DataA

AddrD

DataB

DataD

Addr

DataW
DataR

1

0
aluX

pcF+4

+4pcDpcF

pcX
pcM

rs1X

rs2X

aluM

rs2MimmX

Fetch(F) Decode(D) Execute(X) Mem(M0) Mem(M0)

IR.F/D

IR.D/X IR.X/M IR.M/W

Imm.

Kill

IR.D/X.Src

PC.Src

❶ To kill a fetched instruction – Insert a nop

❷ Selecting the right PC for next instruction

Asrc[1:0]

nop 1
0

I1 096 ADD

I2 100 JAL 200

I3 104 ADD

I4 -- --

I5 300 ADD

Pengju Ren@XJTU 2023

Pipelining Jumps

64

IMEMIMEM

ALU

+4

DMEMDMEM
Branch
Comp.

Reg[]Reg[]

AddrA

AddrB

DataA

AddrD

DataB

DataD

Addr

DataW
DataR

1

0
aluX

pcF+4

+4pcDpcF

pcX
pcM

rs1X

rs2X

aluM

rs2MimmX

Fetch(F) Decode(D) Execute(X) Mem(M0) Mem(M0)

IR.F/D

IR.D/X IR.X/M IR.M/W

Imm.

IR.D/X.Src

PC.Src

𝑺𝒓𝒄 𝒔𝒓𝒄 𝑫

if UJ: Asrc = 00; else Asrc=others

If UJ: PC.src=1; else PC.src=0

If UJ: IR.D/X.src=1; else IR.D/X.src=0

Asrc[1:0]

nop 1
0

Any interaction
between stall
and jump ?

Kill

I1 096 ADD

I2 100 JAL 200

I3 104 ADD

I4 -- --

I5 300 ADD

Pengju Ren@XJTU 2023

NextPC Calculation Bubbles

65

t0 t1 t2 t3 t4 t5 t6 t7 …

(ଵ ଵ ଵ ଵ ଵ ଵ

(ଶ ଶ ଶ ଶ ଶ ଶ

(ଷ ଷ nop nop nop nop

t0 t1 t2 t3 t4 t5 t6 t7 …

IF ଵ ଶ ଷ -- ହ

ID ଵ ଶ nop -- ହ

EX ଵ ଶ nop -- ହ

MA ଵ ଶ nop -- ହ

WB ଵ ଶ nop - ହ

nop => pipeline bubble

(ସ -- −− −− −− −−

(ହ ହ ହ ହ ହ ହ

Pengju Ren@XJTU 2023

Pipelining Conditional Branches

66

IMEMIMEM

ALU

+4

DMEMDMEM
Branch
Comp.

Reg[]Reg[]

AddrA

AddrB

DataA

AddrD

DataB

DataD

Addr

DataW
DataR

1

0
aluX

pcF+4

+4pcDpcF

pcX
pcM

rs1X

rs2X

aluM

rs2MimmX

Fetch(F) Decode(D) Execute(X) Mem(M0) Mem(M0)

IR.F/D

IR.D/X
IR.X/M IR.M/W

Imm.

IR.D/X.Src

PC.Src

Asrc[1:0]

nop 1
0

I1 096 ADD

I2 100 BEQ X1,X2, 200

I3 104 ADD

I4 108 ADD

I5 300 ADD

Kill

IR.X/M.Src

1
0

nop

Branch condition is not known until the execute stage
what action should be taken in the decode stage?

If the branch is taken:
❶Kill the two following instructions
❷The instruction at the decode stage is not valid
(Stall signal is not valid)

Pengju Ren@XJTU 2023

Pipelining Conditional Branches

67

I1 096 ADD

I2 100 BEQ X1,X2, 200

I3 104 ADD

I4 108 ADD

I5 300 ADD

Kill

PC.src, Asrc, IR.D/X.Src and IR.X/M.Src are depends on
opcodeD and when Result of Branch Comp is True(BC.r).

if SB&BranchComp.r==T: Asrc = 00; else Asrc=others

If SB&BranchComp.r==T: PC.src=1; else PC.src=0

If SB&BranchComp.r==T: IR.D/X.src=1 and IR.D/X.src=1;
else IR.D/X.src=0 and IR.D/X.src=0

IMEMIMEM

ALU

+4

DMEMDMEM
Branch
Comp.

Reg[]Reg[]

AddrA

AddrB

DataA

AddrD

DataB

DataD

Addr

DataW
DataR

1

0
aluX

pcF+4

+4pcDpcF

pcX
pcM

rs1X

rs2X

aluM

rs2MimmX

Fetch(F) Decode(D) Execute(X) Mem(M0) Mem(M0)

IR.F/D

IR.D/X
IR.X/M IR.M/W

Imm.

IR.D/X.Src

PC.Src

Asrc[1:0]

nop 1
0

IR.X/M.Src

1
0

nop

Pengju Ren@XJTU 2023

68

t0 t1 t2 t3 t4 t5 t6 t7 …

(ଵ ଵ ଵ ଵ ଵ ଵ

(ଶ BEQ X1,X2,200 ଶ ଶ ଶ ଶ ଶ

(ଷ ଷ ଷ nop nop nop

(ସ ସ nop nop nop

t0 t1 t2 t3 t4 t5 t6 t7 …

IF ଵ ଶ ଷ ସ ହ

ID ଵ ଶ ଷ Nop ହ

EX ଵ ଶ nop nop ହ

MA ଵ ଶ nop nop ହ

WB ଵ ଶ nop nop ହ

nop => pipeline bubble

(ହ ହ ହ ହ ହ ହ

Branch Pipeline Diagrams

Pengju Ren@XJTU 2023

New Stall Signal

69

Don’t stall if the branch is taken. Why?
Instruction at the decode stage is invalid

Stall =((IR.F/D.rs1==IR.D/X.rd)IR.D/X.we
+ (IR.F/D.rs1==IR.X/M.rd)IR.X/M.we) IR.F/D.re1
or

((IR.F/D.rs2==IR.D/X.rd)IR.D/X.we
+ (IR.F/D.rs2==IR.X/M.rd)IR.X/M.we) IR.F/D.re2
and

!(()

Pengju Ren@XJTU 2023

Control Equations for PC and IR Muxes

70

Give priority to the older
instruction, i.e., execute
stage instruction over
decode stage instruction

Why?

pc+4 is a
speculative guess

IR.D/X 𝑬

IR.D/X 𝑫

Others IR.F/D

IR.X/M depends on 𝑬

Others IR.D/X

𝑬

(PC=PC+{immediate,1b’0)

𝑫

(PC=PC+{immediate,1’b0)

PC= (R[rs1]+immediate)

Ebreak or ecall PC jump to Debug or OS control

Others PC=PC+4

Pengju Ren@XJTU 2023

Reducing Branch Penalty

71

One pipeline bubble can be removed if an extra comparator(or adder)
is used in the Decode stage

IMEMIMEM

ALU

+4

DMEMDMEM
Branch
Comp.

Reg[]Reg[]

AddrA

AddrB

DataA

AddrD

DataB

DataD

Addr

DataW
DataR

1

0
aluX

pcF+4

+4pcDpcF

pcX
pcM

rs1X

rs2X

aluM

rs2MimmX

Fetch(F) Decode(D) Execute(X) Mem(M0) Mem(M0)

IR.F/D

IR.D/X
IR.X/M IR.M/W

Imm.

IR.D/X.Src

PC.Src

Asrc[1:0]

nop 1
0

IR.X/M.Src

1
0

nopPengju Ren@XJTU 2023

Reducing Branch Penalty

72

One pipeline bubble can be removed if an extra comparator is used
in the Decode stage

Pipeline diagram now same as for jumps

IMEMIMEM

ALU

+4

DMEMDMEM
Branch
Comp.

Reg[]Reg[]

AddrA

AddrB

DataA

AddrD

DataB

DataD

Addr

DataW
DataR

1

0
aluX

pcF+4

+4pcDpcF

pcX pcM

rs1X

rs2X

aluM

rs2MimmX

Fetch(F) Decode(D) Execute(X) Mem(M0) Mem(M0)

IR.F/D

IR.D/X
IR.X/M IR.M/W

Imm.

IR.D/X.Src

PC.Src

Asrc[1:0]

nop 1
0

IR.X/M.Src

1
0

nop

Pengju Ren@XJTU 2023

Branch Delay Slots

73

Change the ISA semantics so that the instruction that follows a
jump or branch is always executed

– gives compiler the flexibility to put in a useful instruction
where normally a pipeline bubble would have resulted.

Other techniques include branch prediction, which can dramatically
reduce the branch penalty... to come later

Delay slot instruction
executed regardless
of branch outcome

I1 096 ADD

I2 100 BEQ X1,X2, 200

I3 104 ADD

I4 108 ADD

I5 300 ADD

Pengju Ren@XJTU 2023

74

Scheduling Branch Delay Slots

 A is the best choice, fills delay slot & reduces instruction count (IC) (#1)
 In B, the sub instruction may need to be copied, increasing IC
 In B and C, must be okay to execute sub when branch fails

add $1,$2,$3
if $2=0 then

delay slot

A. From before branch B. From branch target C. From fall through

add $1,$2,$3
if $1=0 then

delay slot

add $1,$2,$3
if $1=0 then

delay slot

sub $4,$5,$6

sub $4,$5,$6

becomes becomes becomes

if $2=0 then

add $1,$2,$3
add $1,$2,$3
if $1=0 then

sub $4,$5,$6

add $1,$2,$3
if $1=0 then

sub $4,$5,$6

Pengju Ren@XJTU 2023

Why an instruction may not be
dispatched every cycle (CPI > 1)

75

 Full bypassing may be too expensive to implement
– Typically all frequently used paths are provided
– Some infrequently used bypass paths may increase cycle
time and counteract the benefit of reducing CPI

 Loads have two cycle latency
– Instruction after load cannot use load result
– MIPS-I ISA defined load delay slots, a software-visible
pipeline hazard (compiler schedules independent instruction
or inserts NOP to avoid hazard). Removed in MIPS-II.

 Conditional branches may cause bubbles
– Kill following instruction(s) if no delay slots

Machines with software-visible delay slots may execute significant
number of NOP instructions inserted by the compiler

Pengju Ren@XJTU 2023

Traps and Interrupts (other Control hazards)

In class, we’ll use following terminology
 Exception: An unusual internal event caused by

program during execution
– E.g., page fault, arithmetic underflow

 Interrupt: An external event outside of running
program
 Trap: Forced transfer of control to supervisor

caused by exception or interrupt
– Not all exceptions cause traps (c.f. IEEE 754 floating-point

standard)

76

Pengju Ren@XJTU 2023

Asynchronous Interrupts

 An I/O device requests attention by asserting one
of the prioritized interrupt request lines
When the processor decides to process the

interrupt
– It stops the current program at instruction Ii ,

completing all the instructions up to Ii-1 (precise
interrupt)

– It saves the PC of instruction Ii in a special register (EPC)
– It disables interrupts and transfers control to a

designated interrupt handler running in supervisor
mode

77

Pengju Ren@XJTU 2023

Trap:
altering the normal flow of control

78

Ii-1 HI1

HI2

HIn

Ii

Ii+1

program
trap
handler

An external or internal event that needs to be processed by another (system)
program. The event is usually unexpected or rare from program’s point of view.

Pengju Ren@XJTU 2023

Trap Handler

 Saves EPC before enabling interrupts to allow
nested interrupts

– need an instruction to move EPC into GPRs
– need a way to mask further interrupts at least until EPC can be

saved

Needs to read a status register that indicates the
cause of the trap
Uses a special indirect jump instruction ERET

(return-from-environment) which
– enables interrupts
– restores the processor to the user mode
– restores hardware status and control state

79

Pengju Ren@XJTU 2023

Synchronous Trap

 A synchronous trap is caused by an exception on
a particular instruction

 In general, the instruction cannot be completed
and needs to be restarted after the exception has
been handled

– requires undoing the effect of one or more partially
executed instructions

 In the case of a system call trap, the instruction is
considered to have been completed

– a special jump instruction involving a change to a
privileged mode

80

Pengju Ren@XJTU 2023

Exception Handling 5-Stage Pipeline

81

 How to handle multiple simultaneous exceptions in
different pipeline stages?

 How and where to handle external asynchronous
interrupts?

PC
Inst.
Mem D Decode E M

Data
Mem W+

Illegal
Opcode Overflow Data address

Exceptions
PC address
Exception

Asynchronous Interrupts

Pengju Ren@XJTU 2023

Exception Handling 5-Stage Pipeline

82

PC
Inst.
Mem D Decode E M

Data
Mem W+

Illegal
Opcode

Overflow Data address
Exceptions

PC address
Exception

Asynchronous
Interrupts

Exc
D

PC
D

Exc
E

PC
E

Exc
M

PC
M

Ca
us

e
EP

C

Kill D
Stage

Kill F
Stage

Kill E
Stage

Select
Handler
PC

Kill
Writeback

Commit
Point

Pengju Ren@XJTU 2023

Exception Handling 5-Stage Pipeline

 Hold exception flags in pipeline until commit
point (M stage)

 Exceptions in earlier pipe stages override later
exceptions for a given instruction

 Inject external interrupts at commit point
(override others)

 If trap at commit: update Cause and EPC registers,
kill all stages, inject handler PC into fetch stage

83

Pengju Ren@XJTU 2023

Speculating on Exceptions

 Prediction mechanism
– Exceptions are rare, so simply predicting no exceptions is very

accurate!

 Check prediction mechanism
– Exceptions detected at end of instruction execution pipeline,

special hardware for various exception types

 Recovery mechanism
– Only write architectural state at commit point, so can throw away

partially executed instructions after exception
– Launch exception handler after flushing pipeline

 Bypassing allows use of uncommitted instruction
results by following instructions

84

Pengju Ren@XJTU 2023

Exception Pipeline Diagram

85

t0 t1 t2 t3 t4 t5 t6 t7 t8

(I1) 096 ADD F D E M Nop

(I2) 100 XOR F D E Nop Nop

(I3) 104 SUB F D Nop Nop Nop

(I4) 108 ADD F Nop Nop Nop Nop

(I5) Exc Handler code F D E M W

t0 t1 t2 t3 t4 t5 t6 t7 t8

F I1 I2 I3 I4 I5

D I1 I2 I3 Nop I5

E I1 I2 Nop Nop I5

M I1 Nop Nop Nop I5

W Nop Nop Nop Nop I5

Resource Usage

Pengju Ren@XJTU 2023

Exceptions handled by OS Kernel

An exception is a transfer of control to the OS kernel in
response to some event (i.e., change in processor state)

 Kernel is the memory-resident part of the OS

86

0
1

2
...

n-1

 Each type of event has a
unique exception number k

 k = index into exception table
(a.k.a. interrupt vector)

 Handler k is called each time
exception k occursException Table

Code for
exception handler 0

Code for
exception handler 1

Code for
exception handler n-1

...

Exception
numbers Pengju Ren@XJTU 2023

Issues in Complex Pipeline Control

87

IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

GPRs
FPRs

• Structural conflicts at the execution stage if some FPU or memory
unit is not pipelined and takes more than one cycle
• Structural conflicts at the write-back stage due to variable
latencies of different functional units
• Out-of-order write hazards due to variable latencies of different
functional units
• How to handle exceptions?

Pengju Ren@XJTU 2023

More Complex In-Order Pipeline

88

 Delay writeback so all operations
have same latency to W stage

– Write ports never oversubscribed
(one inst. in & one inst. out every
cycle)

– Stall pipeline on long latency
operations, e.g., divides, cache
misses

– Handle exceptions in-order at
commit point

Commit
Point

PC
Inst.
Mem D Decode X1 X2

Data
Mem W+GPRs

X2 WFAdd X3

X3

FPRs X1

X2 FMul X3

X2FDiv X3

Unpipelined
divider

How to prevent increased writeback latency
from slowing down single cycle integer
operations? Bypassing

Pengju Ren@XJTU 2023

In-Order Superscalar Pipeline

89

 Fetch two instructions per cycle; issue
both simultaneously if one is
integer/memory and other is floating
point

 Inexpensive way of increasing throughput,
examples include Alpha 21064 (1992) &
MIPS R5000 series (1996)

 Same idea can be extended to wider issue
by duplicating functional units (e.g. 4-issue
UltraSPARC & Alpha 21164) but regfile
ports and bypassing costs grow quickly

Commit
Point

2
PC

Inst.
Mem D

Dual
Decode X1 X2

Data
Mem W+GPRs

X2 WFAdd X3

X3

FPRs X1

X2 FMul X3

X2FDiv X3

Unpipelined
dividerPengju Ren@XJTU 2023

90

Next Lecture：SuperScalar Processor

(Instruction level parallel)

Pengju Ren@XJTU 2023

