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Direction Estimation of Coherent Signals Using
Spatial Signature

Jingmin Xin, Member, IEEEand Akira SanpMember, IEEE

Abstract—A computationally efficient spatial signature-based (cyclic) statistics-based methods [5], [6], [16] require the
(SS) method is proposed for estimating the directions of arrival of (cyclic) cumulant to be evaluated; the FA-based method [14]
coherent narrowband signals impinging on a uniform linear array. needs an iterative algorithm [15] to solve a nonlinear optimiza-

The normalized SS of the coherent signals is blindly estimated from .~ . . s . ..
the principal eigenvector of array covariance matrix and then is tion in SS estimation; and the MP method [7] is sensitive to

used to estimate the directions with a modified Kumaresan—Prony €rrors in the estimated SS.
method, where a linear prediction model is combined with “sub- In this letter, we propose a computationally efficient

array” averaging. The proposed method not only has the maximum SS-based method for estimating the DOAs of coherent nar-
permissible array aperture and computational simplicity, it also rowband signals impinging on a uniform linear array (ULA)
better resolves closely spaced coherent signals with a small length ithout ti the t | struct f incident
of data and at a lower signal-to-noise ratio. wi out any assumption on the 'empora Structure ot inciden
. . __signals such as the non-Gaussian [5], [6], FA [14], [15], and
Index Terms—Array processing, eigenvalue decomposition, HOCS [16] properties. First, an FBLP model in terms of SS
linear prediction, multipath environment. . . N . . - oo
is combined with “subarray” averaging, and the identifiable
condition of DOA estimation of coherent signals is clarified.
I. INTRODUCTION Furthermore, a blind estimation of the SS from the principal
genvector of array covariance matrix is investigated. Then,
modified Krumaresan—Prony (KP) method is presented for
tered due to various reflections, and it causes the direct a EPA est|m§1t|on, where the maximum pgrm|§5|ble apgrture of
subarray is used, and the effect of estimation error in the SS

reflected signals from a source arriving at an array to lleviated. The effect ¢ th thod is d irated
coherent if their delay differences are sufficiently small [2], [5 IS alleviated. The efiectiveness of the method 1s demonstrate
ough numerical examples.

Although a linear combination of the array response vecto
to the coherent signals (called the “spatial signature (SS)” [8])
is usually not in the array manifold, it is an effective array
response to the source and contains sufficient information onConsider a ULA ofM sensors with spacing, and suppose
the directions of arrival (DOAs) of the signals [5], [6], [8],thatp narrowband signal$s,(n)} with zero-mean and center
[13] as the principal eigenvector of array covariance matrixequencyf, are far enough away and impinge on the array
[11]. Recently some new subspace-based methods with “sfdem distinct directiong ¢;.}. The received signal vector can be
array” averaging have been proposed for DOA estimation afkitten as [2]-[6], [8], [10], [11]
coherent signals by using the SS. They include the fourth-order
statistics-based forward—backward linear prediction (FBLP) z(n) = A(0)s(n) + w(n) 1)
method [5] and extended virtual ESPRIT algorithm [6], the
finite-alphabet (FA) property-based method [14], the high&fhere (n), s(n), and w(n) are the vectors of the re-
order cyclostationarity-based (HOCS) method [16], and tf€ived data, incident signals, and additive noise, re-
second-order statistics-based modified Prony (MP) method [Ppectively, and A(¢#) denotes the array response matrix
Most of these methods exploit the temporal properties of digi@iven by A(6) = [a(61),a(02),...,a(f,)], in which
communication signals to estimate the SS. Unfortunately, (i0x) = [1,e707) . edeo@M=DrOOTT "y = 21 fy,
the ordinary subspace-based methods with spatial smoothiit§r) = (d/¢)sin 6, andc is the propagation speed. The addi-
preprocessing (e.g., [3]), their performance of direction estlY€ noises{wi(n)} are temporally and spatially uncorrelated
mation is affected by the reduced effective array aperture (i.@hite complex Gaussian noise with zero-mean and variance
subarray size). Moreover, they suffer serious degradation wHgngiven by E{w;(n)wj(n)} = o28; ., whereE{-}, (-)*, and
the number of snapshots is small, because the fourth-order denote the expectation, complex conjugate, and Kronecker
delta, respectively, and they are uncorrelated with the incident
Manuscript received March 11, 2002; revised July 12, 2002. The associgtignals{sk(n)}' ; ;
editor coordinating the review of this mainuscript and ap[;rovind it for publica- We assum_e that_ the a”aY is calibrated and that the array re-
tion was Dr. Yiteng (Arden) Huang. sponse matri4(6) is unambiguous. In the frequency-flat mul-

] Jb-Xir;islwitfll_:ge I\Y/Iokbile ior;?rguggC:;iOJns De\/(elopmltant_Leg)npr?tqzies, Fuji)tSlLipath propagation, the incident signals are coherent ones ex-
aboratories Ltd., Yokosuka 239- , Japan (e-mail: jxin@jp.fujitsu.com).
A. Sano is with the Department of System Design Engineering, Keio Unive‘l)—ressed by [3]_[6]’ [8]’ [13]’ [14]
sity, Yokohama 223-8522, Japan (e-mail: sano@sd.keio.ac.jp).
Digital Object Identifier 10.1109/LSP.2002.806044 sp(n) = Prsi(n), fork=1,2,...,p 2

I N MANY applications of array processing such as wireless
communications, multipath propagation is often encoufi-

Il. DATA MODEL AND BASIC ASSUMPTIONS
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where 3, is the complex attenuation coefficient of the signavhereD = diag(e/«°7(01) ¢iwoT(62)
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e«o7()) By some

si(n) with 8 # 0 andg; = 1. We also assume that the numbealgebraic manipulations, from (6)—(8), we obtain

of signalsp is known or has been estimated by the proposed

methods (e.g., see [4] and references therein).

I1l. SS-BASED DOA ESTIMATION
A. Identifiablity of Directions From Spatial Signature
From (1) and (2), the signalgn) can be reexpressed as

a(n) = A(6)Bs1(n) +w(n) = asy(n) +w(n)  (3)

wherea is the SS of{s,(n)} given bya = >7_, Bra(bs),
andB = [B1, (2, ..., 3p)T. Obviously,a contains sufficient in-
formation on{#;} [5]-[8]. By defining the normalized S&as
a/3, its componentga; } can be expressed as

P

a; =Y Bredo (=00 —pT'p 4)
k=1
where 3 = SP_ B, by = [ed«o(=D7(01) giwo(i=1)7(82)

con, el DTN B — (B By, ..., 3], and By = i /.
Evidently, a can be interpreted as the vector of the receiv
“signals” for an array of\/ sensors illuminated by “signals”
{Bx} [5], [6]. Thus, the directiongf} of the signals{sx(n)}
can be determined from the “signalfi; } ., .

Furthermore, we can find thdt,;} differ only by a phase

factorwoT(6y) and obey a linear difference equation [1], [2]

By dividing the full array intoL overlapping subarrays with
m sensors in the forward or backward direction, whére=
M —m+ 1andm > p+ 1, we obtain the linear prediction
(LP) models in terms of the normalized SS for flie forward
and backward “subarrays” [4]

(®)

~ T - T
U4m—1 = ap p aNday_; ) = ayp

wherea;
ap_)?andp = [pro1, pm—2,...,p1]"; {pi} are the

LP coefficients, and-) denotes the Hermitian transpose. By

concatenating (5) fof = 1,2,..., L, we obtain a compact

FBLP equation
=1

ie., z ®p, where z; [Gony Gt 15 - - -5 Gnr) T
2 = lap,an—1,....a¢1]%, ®; = [as.a52,....a7.]7,
and &, [ab1,ap2,...,apz])?. To investigate the identi-

Dy
®,

2f
Zb

(6)

fiability of the DOAs of coherent signals by using (6), we

have to examine the dimension of the signal subspace of
2L x (m — 1) matrix ®.

Proposition: If the array is partitioned so that+ 1 < m <
M +1—p/2, the dimension of the signal subspace of mad¥ix
will equal the number of signals.

%, = [B.Dp.....D""'B]" AT(0)
=A>(9)BAT (9)
@, = Ay(0)B*D~ M~V A (0)

whereB = diag(31, (o, . .
be rewritten as

9)
(10)

-, 3p)- Then, the matrix® in (6) can

A>(0)B
®= A2(0)B2*(D)(Ml) Al (0) =CBA{(9)  (11)
whereC = [AL(6), ®AT(0)]7, ® = diag(¢1, ¥a, ..., 1p),

andz); (B;«/Bi)efjwo(f\lfl)f(éh)_

Under the assumptions tha}, # 0 and A(f) is unam-
biguous, the ranks of the diagonal matricBsand ¥ and
the Vandermonde matriced;(f) and A,(¢) are given by
rank(B) = rank(¥) = p, rank(A;(f)) = min(m — 1,p),
and rank(A2(0)) min(L, p). Hence, wherL > p and
m>p+1,ie,p+1<m< M+ 1-p/2, we can obtain
thatrank(A;(6)) = p andrank(C) = min(2L,p) = p, and
e consequently find that the rank of matrx is given by
rank(®) = p, i.e., the dimension of the signal subspacebof
equalsp. [ |

Therefore, if we can obtain the coefficierts; } that satisfy
the FBLP model in terms of the normalized SS shown in (6), by
forming the prediction polynomiaD(z) =1 — p12=t — -+ —
pm_12~"=1) the directions{6,,} of coherent signals can be
determined from the phases of theignal zeros oD (z) in the
z plane (e.g., see [1], [2], and [4]).

Remark 1: From the proposition, the maximum detectable
number of coherent signals is cleaty/ /3, which coincides
with the necessary condition for unique direction estimation
with probability one derived in [12]. O

B. Blind Estimation of SS

Under the assumptions on the data model, from (3), the array
covariance matrix can be obtained

R =E {z(n)z"(n)} = ryaa” + oI (12)

wherer; is the power ofs; (n) given byrs = E{s1(n)si(n)},
andI ; denotes al/ x M identity matrix. Due to the coherency
of signals{sx(n)}, the rank of noiseless covariance matRx-
oI, is clearly equal to 1, and its eigenvalue decomposition
(EVD) is given by

R — oIy = UAUY = \ujuf (13)

aerely = ['u,l,'u,2, . ,'u,]\/[],A = diag(/\l, Aoy, )\]\,[), {/\1}
and{u;} are the eigenvalues and eigenvectors, anc- A\, =
e = )\]\,[ = 0.

It is known that the principal eigenvecta; contains a suf-
ficient statistic for direction estimation [11]. A comparison of

Proof: By definingA;(f) andA,(f) as the submatrices of (12) and (13) shows that both and«; are the eigenvectors

A() in (1) consisting of the first.— 1 and L rows, respectively,
and by substituting (4) into the vectarg; anday, in (5), we can
get

af = [bl7 bl+17 ... 7bl+m,2]T‘B = Al(a)Dl_IIB
ay :Al(a)lelDf(]\,[—l)B*

()
®)

corresponding to the solitary signal eigenvector of maRix
2T, (i.e., R) [7]. However, we also find that the Sfor the
signal powen, can be determined only ag or r,/n? with a
nonzero-scal@ by using a blind estimation technique [9], when
information about the signals is not used. Similaglgan be es-
timated blindly asi = pu, from (12) and (13), wherg is an
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Estimation Performance of Normalized Spatial Signature

unknown factor. This scaling ambiguity can be handled by im- ,,
posing a constraint on the SS. By defining the normalized prin-
cipal eigenvectofi; asw;/u;i1, whereuwy; is the first element

of uy, from (12) and (13), we obtain

RMSE

20 25

5 10
SNR (dB)

’y(_l(_lH =M |U11|2’l_l,1’l_l,{{ (14) () 1

wherey = r,|3|?. Becausa anda; have their first elements %’
asa; = w11 = 1, we easily find thaty = A1|u;1|?. Thus, we

obtain that the normalized Sis equivalent to the normalized Number of Shapshots N
principal eigenvectot,, i.e.,a = . ; ' '

C. Modified KP Method e

From the proposition, we find that the subarray sizenust R 4 s 10 12 14 16
be set to satisfy the inequalipy+1 < m < M+1—p/2. The P s 0o
KP method takes advantage of the maximum possible apertgike 1. RMSEs of the estimates of normalized spatial signatures versus
of array/subarray to improve the estimation performance affel SNR, (b) number of snapshots, and (c) angular separation in Examples A,
simplify the computation in the estimation of the LP coefficients’ g and C, respectively.
[1], [2]. When the subarray size is setto= M +1—[p/2],
where[z] denotes the smallest integer greater than or equal to
z, from (6), the minimum-norm estimate pfis obtained

Estimation Performance versus SNR (61=5°)

10°

Prikp = 7 (‘I@H)*l 2 (15)

RMSE (deg)

where thep x p matrix®® " has only nonzero eigenvalues, and
the eigenvectors in noise subspace are eliminated.

. . . .. SNR (dB)
The |mplementat|on of the proposed method with the finite Estimation Performance versus SNR (8:=12°)

data{z(n)} =} is summarized as follows.
1) Calculate the sampled array covariance matrifias:

(1/N) S0 w(n)z™ (n).

2) Perform EVD on the matri®, and estimate the normal-
ized SS ag = ﬂl/ﬂll-

3) Calculate the estimagg;p froma by (15) and (6).

4) Estimate{f} from the phases qf zeros of the polyno-
mial D(z) closest to the unit circle in theplane. Fig. 2. RMSEs of the estimatés andd. versus the SNR (dotted line: KP;
Remark 2:The firt three steps roughly takeNBf?, S0 e SSbased 7, descotine spat smoalingrbaced ook U

O(M?)+6M, and8p(p+ 1)(m — 1)+ O(p*) MATLAB flops. line: CRB) in Example A IV = 128).

Hence, the number of flops required by the implementation

is about 8V M? when N > M, where the other needed
computations are negligible.

RMSE (deg)

5 1
SNR (dB)

method clearly has a much lower threshold of SNR at which

the estimation performance drops sharply than the ordinary KP

[1], [2], SS-based MP [7], spatial smoothing-based root-MUSIC

(m = 5) [3], and corrected least squares with truncation-based
A ULA has M = 10 sensors with a half-wavelength spacingl.P (TCLS-LP) (n = 5; see [4] for reference) methods. And its

and two coherent binary phase-shift keying signals that hav&RBSE is close to the CRB like the KP and TCLS-LP methods

raised cosine shape with 50% excess bandwidth come fifomat higher SNRs.

andf, with equal power. The signal-to-noise ratio (SNR) is de- Example B: Performance Versus Number of Snapshotse

fined as the ratio of the signal power to that of the noise at easimulation conditions are the same as in Example A, except that

sensor, where the additive noises are temporally and spatialig SNR is set at 5 dB, and the number of snapsNoisvaried

uncorrelated white complex Gaussian noise. The presentedfrem ten to 1000. The RMSEs of the estimafigsandfs with

sults are based on 1000 independent trial runs. respect to the number of snapshots are shown in Fig. 3. When
Example A: Performance Versus SNRwo coherent sighals N is very small, the proposed method performs as well as the

are fromd; = 5° andf, = 12°, and the SNR is varied from10 KP method and outperforms the others. Xds increased, the

to 25 dB. The number of snapshotsNs= 128. The root mean- matrix R comes to more closely resemble the true one, resulting

squared-error (RMSE) of the estimat@gainst SNR is plotted in a more accurate estimadieas depicted in Fig. 1(b). Thus,

in Fig. 1(a). It is shown that a better estimatés provided as the estimation accuracy of the proposed method becomes better

the SNR is increased. Fig. 2 shows the RMSEs of the estimatgth a much smaller RMSE than that of the other methods.

6, and#f, versus the SNR, where the stochastic Cramér—RaoExample C: Performance Versus Angular Separatidmwo

lower bound (CRB) [10], [11] is also depicted. The proposecbherent signals arrive froy, = 0° andf, = A6, where

IV. NUMERICAL EXAMPLES
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Estimation Performance versus Number of Snapshots (61=5°)
T

10%
=)
(]
=2
w
@»
=
o
10 -
10 100 1000
Number of Snapshots N
; Estimation Performance versus Number of Snapshots (92=12°)
10 T
=l
@
=2
w
7]
>
T
10%

100
Number of Snapshots N

1000

. R (1]
Fig. 3. RMSEs of the estimate§; and 6. versus the number of
snapshots (dotted line: KP; solid line: SS-based MP; dash-dot line: spatial

smoothing-based root-MUSIC; dashed line: TCLS-LP; solid line with “0™  [2]
proposed method; and dash-dots line: CRB) in Example B (SNRdB).
(3]
Estimation Performance versus Angular Separation (61=0°)
10 ' ' '
- (4]
j=3)
kS
w
7]
z (5]
10% - - - - -
12 4 6 8 10 12 14 16
Angular Separation A8 (deg) [6]
Estimation Performance versus Angular Separation (62=1° ~ 16°)
102 T T T T T
g 7]
w
%]
>
o
(8]
10% . . .
12 4 6 8 10 12 14 16
Angular Separation A8 (deg) [9]

Fig.4. RMSEsofthe estimatés andd, versus the angular separation (dotted

line: KP; solid line: SS-based MP; dash-dot line: spatial smoothing-based
root-MUSIC; dashed line: TCLS-LP; solid line with “0”: proposed method; [10]
and dash-dots line: CRB) in Example C (SNR5 dB, andV = 128).

A6 is varied from ® to 16°, and the SNR is fixed at 5 dB.

The other simulation parameters are similar to those in Example
A. The RMSEs of the estimat@sand{f;} versus the angular [12]
separatiomd are shown in Figs. 1(c) and 4, respectively. The
proposed method generally estimates the directions of closel§3]
spaced signals more accurately than the other methods. It is
noted that the RMSE of the proposed method does not decrea[slg]
monotonically with the increasing angular separation like the
CRB [10]. a5

V. CONCLUSION

We proposed an SS-based modified KP method for esti[-lG]

mating the DOAs of coherent narrowband signals impinging

417

on a ULA. The normalized SS is blindly estimated from the

principal eigenvector of array covariance matrix, and the
maximum permissible aperture of subarray is used to improve
the estimation performance. The simulation results demon-
i~ strated that the proposed method better resolves closely spaced
2 coherent signals with a small data length and at a lower SNR.
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