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Direction Estimation of Coherent Signals Using
Spatial Signature

Jingmin Xin, Member, IEEE,and Akira Sano, Member, IEEE

Abstract—A computationally efficient spatial signature-based
(SS) method is proposed for estimating the directions of arrival of
coherent narrowband signals impinging on a uniform linear array.
The normalized SS of the coherent signals is blindly estimated from
the principal eigenvector of array covariance matrix and then is
used to estimate the directions with a modified Kumaresan–Prony
method, where a linear prediction model is combined with “sub-
array” averaging. The proposed method not only has the maximum
permissible array aperture and computational simplicity, it also
better resolves closely spaced coherent signals with a small length
of data and at a lower signal-to-noise ratio.

Index Terms—Array processing, eigenvalue decomposition,
linear prediction, multipath environment.

I. INTRODUCTION

I N MANY applications of array processing such as wireless
communications, multipath propagation is often encoun-

tered due to various reflections, and it causes the direct and
reflected signals from a source arriving at an array to be
coherent if their delay differences are sufficiently small [2], [5].
Although a linear combination of the array response vectors
to the coherent signals (called the “spatial signature (SS)” [8])
is usually not in the array manifold, it is an effective array
response to the source and contains sufficient information on
the directions of arrival (DOAs) of the signals [5], [6], [8],
[13] as the principal eigenvector of array covariance matrix
[11]. Recently some new subspace-based methods with “sub-
array” averaging have been proposed for DOA estimation of
coherent signals by using the SS. They include the fourth-order
statistics-based forward–backward linear prediction (FBLP)
method [5] and extended virtual ESPRIT algorithm [6], the
finite-alphabet (FA) property-based method [14], the higher
order cyclostationarity-based (HOCS) method [16], and the
second-order statistics-based modified Prony (MP) method [7].
Most of these methods exploit the temporal properties of digital
communication signals to estimate the SS. Unfortunately, like
the ordinary subspace-based methods with spatial smoothing
preprocessing (e.g., [3]), their performance of direction esti-
mation is affected by the reduced effective array aperture (i.e.,
subarray size). Moreover, they suffer serious degradation when
the number of snapshots is small, because the fourth-order
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(cyclic) statistics-based methods [5], [6], [16] require the
(cyclic) cumulant to be evaluated; the FA-based method [14]
needs an iterative algorithm [15] to solve a nonlinear optimiza-
tion in SS estimation; and the MP method [7] is sensitive to
errors in the estimated SS.

In this letter, we propose a computationally efficient
SS-based method for estimating the DOAs of coherent nar-
rowband signals impinging on a uniform linear array (ULA)
without any assumption on the temporal structure of incident
signals such as the non-Gaussian [5], [6], FA [14], [15], and
HOCS [16] properties. First, an FBLP model in terms of SS
is combined with “subarray” averaging, and the identifiable
condition of DOA estimation of coherent signals is clarified.
Furthermore, a blind estimation of the SS from the principal
eigenvector of array covariance matrix is investigated. Then,
a modified Krumaresan–Prony (KP) method is presented for
DOA estimation, where the maximum permissible aperture of
a subarray is used, and the effect of estimation error in the SS
is alleviated. The effectiveness of the method is demonstrated
through numerical examples.

II. DATA MODEL AND BASIC ASSUMPTIONS

Consider a ULA of sensors with spacing, and suppose
that narrowband signals with zero-mean and center
frequency are far enough away and impinge on the array
from distinct directions . The received signal vector can be
written as [2]–[6], [8], [10], [11]

(1)

where , , and are the vectors of the re-
ceived data, incident signals, and additive noise, re-
spectively, and denotes the array response matrix
given by , in which

, ,
, and is the propagation speed. The addi-

tive noises are temporally and spatially uncorrelated
white complex Gaussian noise with zero-mean and variance

given by , where , , and
denote the expectation, complex conjugate, and Kronecker

delta, respectively, and they are uncorrelated with the incident
signals .

We assume that the array is calibrated and that the array re-
sponse matrix is unambiguous. In the frequency-flat mul-
tipath propagation, the incident signals are coherent ones ex-
pressed by [3]–[6], [8], [13], [14]

for (2)
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where is the complex attenuation coefficient of the signal
with and . We also assume that the number

of signals is known or has been estimated by the proposed
methods (e.g., see [4] and references therein).

III. SS-BASED DOA ESTIMATION

A. Identifiablity of Directions From Spatial Signature

From (1) and (2), the signals can be reexpressed as

(3)

where is the SS of given by ,
and . Obviously, contains sufficient in-
formation on [5]–[8]. By defining the normalized SSas

, its components can be expressed as

(4)

where ,
, , and .

Evidently, can be interpreted as the vector of the received
“signals” for an array of sensors illuminated by “signals”

[5], [6]. Thus, the directions of the signals
can be determined from the “signals” .

Furthermore, we can find that differ only by a phase
factor and obey a linear difference equation [1], [2].
By dividing the full array into overlapping subarrays with

sensors in the forward or backward direction, where
and , we obtain the linear prediction

(LP) models in terms of the normalized SS for theth forward
and backward “subarrays” [4]

and (5)

where ,
, and ; are the

LP coefficients, and denotes the Hermitian transpose. By
concatenating (5) for , we obtain a compact
FBLP equation

(6)

i.e., , where ,
, ,

and . To investigate the identi-
fiability of the DOAs of coherent signals by using (6), we
have to examine the dimension of the signal subspace of the

matrix .
Proposition: If the array is partitioned so that

, the dimension of the signal subspace of matrix
will equal the number of signals.

Proof: By defining and as the submatrices of
in (1) consisting of the first and rows, respectively,

and by substituting (4) into the vectors and in (5), we can
get

(7)

(8)

where . By some
algebraic manipulations, from (6)–(8), we obtain

(9)

(10)

where . Then, the matrix in (6) can
be rewritten as

(11)

where , ,
and .

Under the assumptions that and is unam-
biguous, the ranks of the diagonal matricesand and
the Vandermonde matrices and are given by

, ,
and . Hence, when and

, i.e., , we can obtain
that and , and
we consequently find that the rank of matrix is given by

, i.e., the dimension of the signal subspace of
equals .

Therefore, if we can obtain the coefficients that satisfy
the FBLP model in terms of the normalized SS shown in (6), by
forming the prediction polynomial

, the directions of coherent signals can be
determined from the phases of thesignal zeros of in the

plane (e.g., see [1], [2], and [4]).
Remark 1: From the proposition, the maximum detectable

number of coherent signals is clearly , which coincides
with the necessary condition for unique direction estimation
with probability one derived in [12].

B. Blind Estimation of SS

Under the assumptions on the data model, from (3), the array
covariance matrix can be obtained

(12)

where is the power of given by ,
and denotes an identity matrix. Due to the coherency
of signals , the rank of noiseless covariance matrix

is clearly equal to 1, and its eigenvalue decomposition
(EVD) is given by

(13)

where , ,
and are the eigenvalues and eigenvectors, and

.
It is known that the principal eigenvector contains a suf-

ficient statistic for direction estimation [11]. A comparison of
(12) and (13) shows that both and are the eigenvectors
corresponding to the solitary signal eigenvector of matrix

(i.e., ) [7]. However, we also find that the SSor the
signal power can be determined only as or with a
nonzero-scale by using a blind estimation technique [9], when
information about the signals is not used. Similarly,can be es-
timated blindly as from (12) and (13), where is an
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unknown factor. This scaling ambiguity can be handled by im-
posing a constraint on the SS. By defining the normalized prin-
cipal eigenvector as , where is the first element
of , from (12) and (13), we obtain

(14)

where . Because and have their first elements
as , we easily find that . Thus, we
obtain that the normalized SSis equivalent to the normalized
principal eigenvector , i.e., .

C. Modified KP Method

From the proposition, we find that the subarray sizemust
be set to satisfy the inequality . The
KP method takes advantage of the maximum possible aperture
of array/subarray to improve the estimation performance and
simplify the computation in the estimation of the LP coefficients
[1], [2]. When the subarray size is set to ,
where denotes the smallest integer greater than or equal to

, from (6), the minimum-norm estimate ofis obtained

(15)

where the matrix has only nonzero eigenvalues, and
the eigenvectors in noise subspace are eliminated.

The implementation of the proposed method with the finite
data is summarized as follows.

1) Calculate the sampled array covariance matrix as
.

2) Perform EVD on the matrix , and estimate the normal-
ized SS as .

3) Calculate the estimate from by (15) and (6).
4) Estimate from the phases of zeros of the polyno-

mial closest to the unit circle in theplane.
Remark 2: The first three steps roughly take 8 ,

, and MATLAB flops.
Hence, the number of flops required by the implementation
is about 8 when , where the other needed
computations are negligible.

IV. NUMERICAL EXAMPLES

A ULA has sensors with a half-wavelength spacing,
and two coherent binary phase-shift keying signals that have a
raised cosine shape with 50% excess bandwidth come from
and with equal power. The signal-to-noise ratio (SNR) is de-
fined as the ratio of the signal power to that of the noise at each
sensor, where the additive noises are temporally and spatially
uncorrelated white complex Gaussian noise. The presented re-
sults are based on 1000 independent trial runs.

Example A: Performance Versus SNR:Two coherent signals
are from 5 and 12 , and the SNR is varied from10
to 25 dB. The number of snapshots is . The root mean-
squared-error (RMSE) of the estimateagainst SNR is plotted
in Fig. 1(a). It is shown that a better estimateis provided as
the SNR is increased. Fig. 2 shows the RMSEs of the estimates

and versus the SNR, where the stochastic Cramér–Rao
lower bound (CRB) [10], [11] is also depicted. The proposed

Fig. 1. RMSEs of the estimates of normalized spatial signatures versus
(a) SNR, (b) number of snapshots, and (c) angular separation in Examples A,
B, and C, respectively.

Fig. 2. RMSEs of the estimateŝ� and �̂ versus the SNR (dotted line: KP;
solid line: SS-based MP; dash-dot line: spatial smoothing-based root-MUSIC;
dashed line: TCLS-LP; solid line with “o”: proposed method; and dash-dots
line: CRB) in Example A (N = 128).

method clearly has a much lower threshold of SNR at which
the estimation performance drops sharply than the ordinary KP
[1], [2], SS-based MP [7], spatial smoothing-based root-MUSIC
( ) [3], and corrected least squares with truncation-based
LP (TCLS-LP) ( ; see [4] for reference) methods. And its
RMSE is close to the CRB like the KP and TCLS-LP methods
at higher SNRs.

Example B: Performance Versus Number of Snapshots:The
simulation conditions are the same as in Example A, except that
the SNR is set at 5 dB, and the number of snapshotsis varied
from ten to 1000. The RMSEs of the estimatesand with
respect to the number of snapshots are shown in Fig. 3. When

is very small, the proposed method performs as well as the
KP method and outperforms the others. Asis increased, the
matrix comes to more closely resemble the true one, resulting
in a more accurate estimateas depicted in Fig. 1(b). Thus,
the estimation accuracy of the proposed method becomes better
with a much smaller RMSE than that of the other methods.

Example C: Performance Versus Angular Separation:Two
coherent signals arrive from and , where
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Fig. 3. RMSEs of the estimateŝ� and �̂ versus the number of
snapshots (dotted line: KP; solid line: SS-based MP; dash-dot line: spatial
smoothing-based root-MUSIC; dashed line: TCLS-LP; solid line with “o”:
proposed method; and dash-dots line: CRB) in Example B (SNR= 5 dB).

Fig. 4. RMSEs of the estimateŝ� and�̂ versus the angular separation (dotted
line: KP; solid line: SS-based MP; dash-dot line: spatial smoothing-based
root-MUSIC; dashed line: TCLS-LP; solid line with “o”: proposed method;
and dash-dots line: CRB) in Example C (SNR= 5 dB, andN = 128).

is varied from 1 to 16 , and the SNR is fixed at 5 dB.
The other simulation parameters are similar to those in Example
A. The RMSEs of the estimatesand versus the angular
separation are shown in Figs. 1(c) and 4, respectively. The
proposed method generally estimates the directions of closely
spaced signals more accurately than the other methods. It is
noted that the RMSE of the proposed method does not decrease
monotonically with the increasing angular separation like the
CRB [10].

V. CONCLUSION

We proposed an SS-based modified KP method for esti-
mating the DOAs of coherent narrowband signals impinging

on a ULA. The normalized SS is blindly estimated from the
principal eigenvector of array covariance matrix, and the
maximum permissible aperture of subarray is used to improve
the estimation performance. The simulation results demon-
strated that the proposed method better resolves closely spaced
coherent signals with a small data length and at a lower SNR.
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