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Computationally Efficient Subspace-Based Method
for Two-Dimensional Direction Estimation

With L-Shaped Array
Guangmin Wang, Student Member, IEEE, Jingmin Xin, Senior Member, IEEE, Nanning Zheng, Fellow, IEEE,

and Akira Sano, Member, IEEE

Abstract—In order to mitigate the effect of additive noises
and reduce the computational burden, we propose a new com-
putationally efficient cross-correlation based two-dimensional
(2-D) direction-of-arrivals (DOAs) estimation (CODE) method
for noncoherent narrowband signals impinging on the L-shaped
sensor array structured by two uniform linear arrays (ULAs). By
estimating the azimuth and elevation angles independently with
a one-dimensional (1-D) subspace-based estimation technique
without eigendecomposition, where the null spaces are obtained
through a linear operation of the matrices formed from the
cross-correlation matrix between the received data of two ULAs,
then the pair-matching of estimated azimuth and elevation angles
is accomplished by searching the minimums of a cost function
of the azimuth and elevation angles, where the computation-
ally intensive and time-consuming eigendecomposition process
is avoided. Further the asymptotic mean-square-error (MSE)
expressions of the azimuth and elevation estimates are derived.
The effectiveness of proposed method and the theoretical analysis
are verified through numerical examples, and it is shown that the
proposed CODE method performs well at low signal-to-noise ratio
(SNR) and with a small number of snapshots.

Index Terms—Direction-of-arrival (DOA) estimation, eigende-
composition, pair-matching, uniform linear array (ULA).

I. INTRODUCTION

T WO-DIMENSIONAL (2-D) direction-of-arrivals
(DOAs) (i.e., elevation and azimuth angles) estima-

tion of multiple signals by using planar arrays with various
array geometries plays an important role in many practical
applications such as sonar, radar, and communications, and
it has been well studied in the literature (see, e.g., [12]–[27],
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and references therein). Due to the increase in the dimension-
ality of the 2-D DOA estimation problem, the computational
complexity of DOA estimation process is severely affected by
the array geometry [14], [15], and further the pair-matching
(i.e., association or alignment) of the estimated elevation and
azimuth angles is usually required [13], [14], [23]–[27], where
most conventional pairing algorithms involve 2-D searching
and/or nonlinear optimization. Hence much efforts have fo-
cused on reducing the computational complexity of the 2-D
estimation problem and facilitating the estimation algorithm.

In recent years, some planar sensor arrays formed with two
or more uniform linear arrays (ULAs) with simple and speci-
fied geometry configurations have received considerable atten-
tion (e.g., [1]–[7], [28]–[31]), where the 2-D DOAs of mul-
tiple incident signals can be estimated with reduced compu-
tational complexity by applying most one-dimensional (1-D)
subspace-based estimation methods such as the ESPRIT (esti-
mation of signal parameters via rational invariance techniques)
method [32] and its variants [33], [34], which have been ex-
tensively studied in the literature (cf. [10], [12] and references
therein), whereas the crux is the pair-matching of the eleva-
tion and azimuth angles estimated separately. Especially the
L-shaped array composed of two ULAs connected orthogonally
at the one end of each ULA (i.e., shifted cross array) has some
advantages in coverage area and implementation [1], [3], [4],
and several DOA estimation methods were developed for nar-
rowband signals impinging on the L-shaped array placed in the

plane [1], [18], [23]. By exploiting the geometric struc-
ture of the L-shaped array, a relatively efficient maximum like-
lihood (ML) method was proposed for DOA estimation [1],
where the orthogonality of signal and noise subspaces based
pairing technique was also given, but good initial estimates are
required to make the iterative ML algorithm converge to the
global optimum point. By employing the shift invariance and
conjugate centrosymmetry of the ULA, a closed-form unitary
ESPRIT method was applied to the L-shaped array with auto-
matic pairing by using real-valued eigendecomposition either in
element space or beamspace [18]. Additionally a matrix pencil
based noniterative method was suggested to estimate the direc-
tions independently from the received data of each array [23],
where two estimates of polarization ratio were used to search
all the possible pairs of the estimated elevation and azimuth an-
gles, and the partition and stacking of the received data matrix
increase the computational burden of the involved eigendecom-
position process.

1053-587X/$26.00 © 2011 IEEE
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On the other hand, more recently some new direction estima-
tion methods were proposed for the L-shaped array placed in
the plane in attempt to solve the 2-D estimation problem
in more computationally efficient way [3]–[5], [7], [31]. By
utilizing the shift invariance and the partition of array response
vector of two overlapping subarrays of each ULA, a modi-
fied propagator method (MPM) with eigendecomposition was
presented to estimate the elevation and azimuth angles indepen-
dently from the covariance matrix of combined received data
of two overlapping subarrays of each ULA [3]. However un-
like the ordinary propagator method (PM) [9], the least-square
(LS) estimation of the linear propagator is seriously affected by
the nonzero correlations of additive noises between two over-
lapping subarrays, and correspondingly the angle estimates are
biased regardless of the signal-to-noise ratio (SNR). Further-
more a pair-matching procedure is still required to associate
the elevation and azimuth estimates due to the independent or-
derings of the array response vectors of two ULAs in terms
of the elevation or azimuth angles and that of eigenvalues of
two above-mentioned covariance matrices for 1-D DOA esti-
mation with respect to each ULA [4], [8]. By dividing one
ULA into two overlapping subarrays to gain the shift invari-
ance of these subarrays, a joint singular value decomposition
(SVD) based method (JSVD) was suggested to 2-D DOA es-
timation with automatic pairing by using two cross-correlation
matrices (CCMs) between two subarrays and another ULA [5],
where the effect of additive noise is mitigated. The key point
of [5] and its variants [35], [36] is the ordering exchange of
a product of the source signal covariance matrix and a diag-
onal matrix of the phase delays with respect to the elevation
or azimuth angle, which is only valid when the source signal
covariance matrix is diagonal matrix. Unfortunately the JSVD
[5] performs worse in the estimation of azimuth angle even
in the case of uncorrelated signals when the number of snap-
shots is small, because the nonzero cross-correlations in the
estimated source signal covariance matrix couple up the array
response vectors in terms of the azimuth angle, and it results
in inaccurate parameter estimate even at high SNR. An alter-
native cross-correlation matrix and SVD based method was
proposed for 2-D DOA estimation with automatic pairing [7],
but it involves the minimization of a constrained nonlinear
function and necessitates a prior knowledge of the powers of
incident signals. By introducing an auxiliary electrical angle
as a function of the elevation and azimuth angles and adopting
the 1-D generalized ESPRIT method [34], a joint estimation
method was proposed without pair-matching procedure [31],
however it requires two computationally intensive eigenvalue
decomposition (EVD) processes and a restriction on the ele-
vation and azimuth angles. In addition, an elaborative CCM
based pair-matching method was developed [4], but it is se-
riously affected by the estimation of the “virtual angles” of
incident signals even though the elevation and azimuth angles
are estimated well [5].

Therefore the purpose of this paper is to investigate the 2-D
DOA estimation of noncoherent narrowband signals with the
L-shaped array placed in the plane in a new compu-
tationally efficient way. Since the eigendecomposition (EVD
or SVD) process is computationally intensive and time-con-

Fig. 1. The geometrical configuration of the L-shaped array for 2-D direction
estimation [4].

suming [37], some computationally simple subspace-based 1-D
DOA estimation methods were proposed without eigendecom-
position (see [10] and references therein). In order to alleviate
the effect of additive noise and to reduce the computational
burden involved by eigendecomposition, we proposed a sub-
space-based method without eigendecomposition (SUMWE)
for 1-D DOA estimation with the ULA [10], where the full
ULA is divided into overlapping forward and backward sub-
arrays, and the null space is obtained through a linear op-
eration of the combined Hankel correlation matrix, which is
formed from the cross-correlations of some sensor data by
exploiting the shift invariance of ULA, where the effect of ad-
ditive noise is mitigated. Inspired by the SUMWE, we propose
a new computationally efficient cross-correlation based 2-D
DOA estimation (CODE) method without eigendecomposition
by exploiting the array geometry of L-shaped array. Firstly
the elevation and azimuth angles are estimated independently
by a 1-D subspace-based estimation technique, where the null
spaces are obtained through a linear operation of the matrices
formed from the cross-correlation matrix between the array
data received by two ULAs, and then the pair-matching can be
conducted by searching the minimums of a cost function of the
azimuth and elevation angles, where the eigendecomposition is
avoided in the both procedures. Moreover the statistical anal-
ysis of the proposed DOA estimation method is studied, and
the explicit expressions of the asymptotic mean-square-errors
(MSEs) of the elevation and azimuth estimates are derived. The
effectiveness of proposed method and the theoretical analysis
are substantiated through numerical examples. The simulation
results show that the proposed CODE method has good esti-
mation with a small number of snapshots and at low SNR and
there is good agreement between the theoretical analyzes and
empirical results.

II. DATA MODEL AND ASSUMPTIONS

As shown in Fig. 1, we consider the L-shaped array consisting
of two ULAs in the plane, where each ULA has omni-
directional sensors with spacing , the sensor at the origin of co-
ordinates is the reference one for each ULA, and the interele-
ment spacing between the sensors and of these ULAs is
also , and we suppose that noncoherent narrowband signals
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with the wavelength are in the far-field and imping
on the array from distinct directions with the elevation and az-
imuth angles [1], [4], where the elevation angle and
the azimuth angle are measured clockwise relatively to the

or axis, while the projected azimuth angle is measured
counterclockwise relatively to the axis in the plane.
Then the received signals at the ULAs along the and axes
are given by

(1)

(2)

where

and .
The relationship between the elevation angle , the azimuth
angle and the projected azimuth angle illustrated in
Fig. 1 is given by .

In this paper, we make the following basic assumptions on
the data model, which are similar to that in [10].

A1) The array is calibrated, and the sensor spacing of each
ULA and that between the sensors and satisfy

for avoiding angle ambiguity problems.
A2) For the simplicity of theoretical performance analysis,

the incident signals are temporally complex
white Gaussian random processes with zero-mean and
the variance given by and

, where , , and
denote the statistical expectation, the complex conju-
gate, and Kronecker delta.

A3) The additive noises and are tem-
porally and spatially complex white Gaussian random
processes with zero-mean and the covariance matrices

and
, while they are statistically indepen-

dent with each other, i.e., ,
where , , and indicate the identity
matrix, the null matrix, and Hermitian transpose.
And the additive noise at each sensor of two ULAs
along the and axes is uncorrelated with the incident
signals.

A4) The number of incident signals is known or is esti-
mated by the existing number detection techniques in
advance (cf. [11]), and it satisfies the inequality that

for an array of .
In this paper, we deal with the problem of estimating the ele-

vation and azimuth angles and pairing their estimates in a com-
putationally effective and efficient way and analyze the statis-
tical performance of the proposed 1-D DOA estimation with the
available array data.

III. CODE METHOD WITHOUT EIGENDECOMPOSITION

A. 1-D Estimation of Azimuth Angle

Under the assumptions of data model, from (1) and (2), we
easily obtain the cross-correlation matrix between the re-
ceived data of two ULAs along the and axes as

(3)

where is the source signal covariance matrix defined by
. From (2), we have another signal vector

of the ULA along the axis in backward and conjugate
way

(4)

where ,
, and is an counteri-

dentity matrix. Similarly from (1) and (4), we can get another
cross-correlation matrix between the received data of two
ULAs as

(5)

Obviously the matrices in (3) and in (5) are not affected
by the additive noises of two ULAs. Then by combining these
matrices together, we can form one extended cross-
correlation matrix as

(6)

From Assumption A4 (i.e., ), we can divide in
(2) into two submatrices in the downward direction as

(7)

where and are the and
submatrices consisting of the first and the last
rows of in (2), while their columns are given

by and
. Since the array response

matrix is the Vandermonde matrix with full rank under
Assumption A1, clearly has full rank, and the rows of

can be expressed as a linear combination of linearly
independent rows of ; equivalently there is a
linear operator between and [9]

(8)
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By using (7) and (8), the matrix in (6) can be partitioned into
two submatrices as

(9)

where and consist of the first rows and the last
rows of the matrix , and , while similarly

(or ) and (or ) consist of the first rows
and the last rows of the matrix in (3) (or in (5)).
Hence the linear operator in (8) can be found from and

as [10]

(10)

Further by defining the matrix , from (8),
we can get , which can be used to esti-
mate the azimuth angles in the SUMWE-like manner.

Thus when the number of snapshots is finite, the azimuth an-
gles can be estimated by minimizing the following cost
function

(11)

where

(12)

(13)

while , and is calculated using
the matrix inversion lemma implicitly [10], while the ortho-
normalization of the matrix is used in to improve the
estimation performance [9], and denotes the estimate of the
variable .

B. 1-D Estimation of Elevation Angle

From (1), we can define another signal vector of the
ULA along the axis as

(14)

where , and

. Then from (14) and (2),
we can obtain another cross-correlation matrix between
the received data of the ULAs along the and axes as

(15)

From (3) and (15), we can form a new extended cross-
correlation matrix as

(16)

In the similar way to the estimation of azimuth angle de-
scribed above, by dividing the matrix in (16) into two sub-
matrices as

(17)

where and (or and ) consist of the first
and the last rows of in (1) [or in (16)]. Then
we can also obtain a new relation with the linear
operator as . As a result, the elevation an-
gles can be estimated by minimizing the following cost
function

(18)

where

(19)

(20)

and .

C. Pair-Matching of Azimuth and Elevation Estimates

Since the estimated azimuth and elevation angles
and are obtained independently, we should associate
these estimates, when there are multiple incident signals. By
combining the received signals at the ULAs along the and
axes in (1) and (2), we define a new combined vector

as

(21)
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where , and the extended
array response matrix is given by

(22)

Evidently we have
. This means that the last

rows of in (22) can be expressed as a linear
combination of linearly independent rows of , i.e.

(23)

Further from (21), we obtain a covariance matrix
of the combined signal vector of two ULAs as

(24)

where and are the covariance matrices of the
array data of the ULA along the or axis given by

and
, while

and are two submatrices consisting of the first and the
last columns of the matrix in (24). Hence we can
find that the elevation angle and azimuth angle can be
estimated by minimizing the following cost function:

(25)

where ,

, and .
Therefore from (25), the estimated parameters and

can be associated by

(26)

for and . Now the pairing
process is accomplished by repeating the above minimization
for , where the th elevation estimate is as-
sociated with the th azimuth estimate , and the constraint
condition for is to avoid the dif-
ferent associate with the same .

D. Implementation of Proposed Method

As shown in (6) and (16), the elevation and azimuth angles
are estimated independently by using the 1-D subspace-based
technique from the matrices formed from the cross-correlation
matrix of two ULAs along the and axes, whereas the
covariance matrices and of two ULAs are required
only for pair-matching of the estimated elevation and azimuth
angles, where the computational burdensome eigendecompso-
tion is not needed, and the effect of additive noises is mitigated
in the DOA estimation. Based on the above analysis, when the

snapshots of array data are available, the
proposed CODE method can be implemented as follows:

1) Calculate the estimate of the covariance matrix in (24)
as

(27)

flops
2) Form the estimates of the correlation matrices in (6)

and in (16) from in (27) as

(28)

(29)

3) Calculate the estimated orthogonal projectors by using
(12) and (13) and by using (19) and (20).

flops

4) Estimate the azimuth and elevation angles and
by finding the phases of the zeros of the polynomial

and using (11) and (18), where

and

while and or
.

flops
5) Perform the pairing of the estimated azimuth and elevation

parameters by using (26).

flops

In above, the computational complexity of each step is
roughly indicated in terms of the number of MATLAB flops,
and the computational complexity is flops if

, which occurs often in application of DOA estimation.
Remark 1: Unlike the classical subspace-based direction esti-

mation methods such as the MUSIC (multiple signal classifica-
tion) [43], [47] and ESPRIT [32], some computationally simple
subspace-based 1-D direction estimators without eigendecom-
position such as the orthonormal PM (OPM) [9] and SUMWE
[10] were proposed, where the null space is obtained through a
linear propagator based on the partition of array response matrix
similar to (7) and (8) and used to estimate the directions with a
direction finding cost function similar to (11) [or (18)], and cer-
tainly they can be employed to each ULA of the L-shaped array
along the or axis to estimate the azimuth or elevation angles
independently. Essentially the estimation performance of these
methods [9], [10] and the proposed CODE method is affected by
the estimation of linear propagator and the working array aper-
ture. By partitioning the covariance matrix (or ) of each
ULA into two parts such as , the OPM linear

operator is estimated as (i.e., [9,
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Eq. (27)]). From (24), we can find that this LS estimate
is affected by the additive noise at each ULA and it results in
worse estimation of (or ), when the SNR is relatively low
and/or the number of snapshots is small (cf. [9]). On the other
hand, by decorrelating the coherency of incident signals with
subarray averaging, the SUMWE linear propagator is
estimated from the combined Hankel correlation matrix formed
by the cross-correlations of some sensor data of one ULA, where
the influence of additive noise is alleviated. Unfortunately, the
SUMWE may performs worse for the uncorrelated or correlated
signals with small number of snapshot or at low SNR, because
the working array aperture is reduced to due to subarray
averaging and only cross-correlations of one ULA is
used in the estimation . However, since the maximum
working array aperture (i.e., ) is used in direction finding, and
all cross-correlations between two ULAs of the L-shaped array
along the and axes are effectively exploited in the LS es-
timation in (13) (or in (20), where the influence of ad-
ditive noises is sufficiently mitigated, and the proposed CODE
method outperforms the OPM and SUMWE in the estimation
of azimuth and elevation angles.

IV. STATISTICAL ANALYSIS

The performance of the 2-D DOA estimator is usually af-
fected by the 1-D estimation of the elevation and azimuth angles
itself and the pair-matching of estimated elevation and azimuth
angles. Here we study the statistical performance of the pro-
posed CODE method for 1-D elevation or azimuth estimation
for large number of snapshots.

When the number of snapshots is sufficiently large, firstly
we can find that the estimated azimuth and elevation angles
and obtained by (11) and (18) are consistent with the fol-
lowing Lemma on the consistency of the CODE estimates.

Lemma: As the number of snapshots tends to infinity, the
estimated azimuth and elevation angles and obtained by
minimizing the cost functions in (11) and in (18)
approach the true parameters and with probability one
(w.p.1).

Proof: See Appendix A.
From this Lemma, we can obtain the asymptotic MSE expres-

sions of these estimates and as follows.
Theorem 1: The large-sample MSEs of the estimates and
obtained by (11) and (18) are given by

(30)

(31)

where , ,

,

, and , while

, ,

, , and

.
Proof: See Appendix B.

V. NUMERICAL EXAMPLES

In this section, we verify the estimation and pairing perfor-
mances of the proposed method and the theoretical analysis of
the statistical property of the proposed 1-D DOA estimation
through some numerical examples. Each ULA of the L-shaped
array has sensors with half-wavelength spacing, and
the SNR is defined as the ratio of the signal power to the noise
variance at each sensor. In the simulations, the subspace-based
1-D DOA estimators such as the root-MUSIC [43], [44], [47],
the OPM [9] and the SUMWE [10] and the 2-D DOA estimation
methods such as the MPM [3] and the JVSD [5] for the L-shaped
array are carried out for comparing the performance of direction
estimation, where the correct pairing is used in these methods
except for the JSVD, while the CCM-based pair-matching with
the ESPRIT 1-D DOA estimation (referred as CCM-ESPRIT)
[4] is also conducted for comparing the performance compar-
isons of direction estimation and successful pair-matching. All
the results shown below are obtained from 1000 independent
trials.

Firstly we briefly review the 2-D DOA estimation techniques
such as the MPM [3] and the JSVD [5] and the CCM-based
pair-matching [4] for the L-shaped array in the plane for
better understanding of the performance comparison. Then the
effectiveness of the proposed CODE method and the validity of
statistical analysis are demonstrated.

1) Review of MPM [3]: By dividing the ULA along the axis
into two forward overlapping subarrays with sensors and
letting be the subarray response matrix, which consists of
the first rows of , from (2), the received signals of
these subarrays are expressed by

(32)

(33)

where ,

, and the
matrix can be partitioned as

(34)

Then a signal vector is formed as

(35)
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where , and the
combined array response matrix is given by

(36)

with . Clearly there is a
linear propagator between and

as [9]

(37)

By dividing into three parts as follows:

(38)

and by substituting (38), (34), and (36) into (37), we easily get

(39)

(40)

(41)

Hence from (39) and (41), we have [3], [8]

(42)

This means that the azimuth angle (i.e., the diagonal element
of ) can be estimated from the eigenvalue of in
an ESPRIT-like manner (cf. [3], [32]), where denotes the
pseudoinverse.

Further when the finite snapshots of array data are available,
from (35) and (37), the linear propagator can be estimated
from the sampled covariance matrix
of combined received data of two overlapping forward
subarrays as

(43)

where

(44)

By performing the same procedure on the received data of the
ULA on the axis, the elevation angle can be also obtained
(see [3] for details).

Remark 2: From (32), (33), and (35), by taking the ex-
pectation on both sides of (44), we can obtain that

, where ,

, denotes an matrix with
unity elements along the th upper (for ) or lower (for )
diagonal off the major diagonal and zeros elsewhere. Evidently
the estimate in (43) (i.e., or in [3, Eq. (17) or
(18)]) is not the optimal solution of the linear propagator
even when , and consequently the MPM [3] gives
the estimate of elevation or azimuth angle with larger MSE

regardless of SNR, though the ESPRIT-like manner is em-
ployed for estimating the azimuth or elevation angles with
computationally cumbersome eigendecomposition.

2) Review of JSVD [5]: By dividing the ULA along the axis
into two forward overlapping subarrays with sensors and
letting be the subarray response matrix, which consists of
the first rows of , from (1), the received signals of
these subarrays are expressed by

(45)

(46)

where ,

, and two
cross-correlation matrices and

between in (2) and in (45) or in (46) are
given by

(47)

(48)

Then a combined cross-correlation matrix is
formed as

(49)

Based on the ideal treatment (i.e.,
in [5, Eqs. (8) and (9)]), in (49) is rewritten as

(50)

By performing the SVD on the matrix in (49) as ,
the following relation is obtained [32]:

(51)

where consists of the first left singular vectors of (i.e.,
the first columns of ), and is a nonsingular matrix,
and hence the elevation angles (i.e., the diagonal elements
of ) can be estimated from the eigenvalues of
in an ESPRIT-like manner (cf. [5], [32]), while the azimuth an-
gles can be estimated with a “beamforming-like” method
by using , where is made up of the
eigenvectors (see [5] for details).

Remark 3: In fact, the ideal treatment
(i.e., in [5, Eqs. (8) and (9)]) is only valid

when the source signal covariance matrix is diagonal ma-
trix. Consequently from (49), we can find that the ESPRIT-like
relation in (51) (i.e., [5, Eq. (16)]) for estimating
the azimuth angles should be corrected to .
Hence when the finite array data are available, the nonzero
entries outside the main diagonal of the estimated source signal
covariance matrix couple up , and the estimate
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is caused to be inaccurate even though the eigendecomposition
is used.

3) Review of CCM-Based Pair-Matching [4]: By
reexpressing the array response matrices in (1) and

in (2) as
and , where

and
, and defining a new signal vector

as

(52)

where and
, from (52) and (1), we can

obtain a new correlation matrix as

(53)

where . Then the th element on the
diagonal of in (53) is given by

(54)

where ,

, and . Obvi-
ously the corresponding relationship between the azimuth and
elevation angles and are emerged into the “signals” ,
which are the correlations between the array data received by
two ULAs, where is the autocorrelation of , while
the others are cross-correlations between and for

. Moreover can be interpreted as the
received “signals” for a ULA of sensors illuminated by
“signals” with the “electrical angles” .

Then from (54), by some simple algebraic manipulations, we
can form the following Toeplitz matrix with the “sig-
nals” in (54)

(55)

where denotes the Toeplitz operation which
returns a nonsymmetric Toeplitz matrix having as its first
column and as its first row, , and

. Evidently we can find
“electrical angles” by employing the OPM [9] on (55).

Thus by comparing the estimates obtained from (55)

with combinations of for

, the pairs of can be matched, where
the estimated elevation angle and azimuth angle are
obtained separately by using the high-resolution direction esti-
mation methods such as the ESPRIT [32] (see [4] for details).

Remark 4: As shown in (54) and (55), the estimation of pa-
rameter and hence the pair-matching of estimated azimuth

Fig. 2. (a) Detection probability. (b) RMSE of � ��� versus the SNR for two
uncorrelated signals (dash-dotted line with “�”: root-MUSIC with correct
pairing; “�”: OPM with correct pairing; “ ”: SUMWE with correct pairing;
solid line: JSVD; dashed line: MPM with correct pairing; dashed line with
“x”: CCM-ESPRIT; solid line with “�”: proposed method; dotted line: theo-
retical RMSE of proposed method; and dash-dotted line: CRB) in Example 1
(� � ���, � � �, �� � � 	 � �
� � �� 	, and �� � � 	 � ��� � 
� 	).

and elevation angles are affected the additive noise and the dif-
ference between the parameters (i.e., ).
Thus the performance of pair-matching may degrade when the
SNR is low and/or the “virtual electrical angles” are spa-
tially close.

4) Example 1—Performance Versus SNR: Now we examine
the performance of the proposed method with respect to the
SNR. Two uncorrelated signals impinge on the array along
the elevation and azimuth angles and

with the equal power, and the SNRs are
varied from 10 to 25 dB, while the number of snapshots is

.
In order to measure the overall performance of estimating the

elevation and azimuth angles, we define a root-MSE (RMSE) of
the th incident signal as

(56)

where is the number of independent trials. The detection
probability of successful pair-matching of the proposed CODE
method is shown and compared with the CCM-ESPRIT [4] in
Fig. 2(a), where the 1-D ESPRIT method [32] is used to estimate
the azimuth and elevation angles independently in the latter,
while the empirical RMSE of is depicted in Fig. 2(b),
where the theoretical RMSE obtained from (30) and (31), the
stochastic Cramer-Rao lower bound (CRB) [6], [39], and the
results of the CCM-ESPRIT [4], the JSVD [5], and the others
with correct pairing [3], [9], [10] and [43], [47] are also plotted
for comparison.

As mentioned in Remark 4, in spite of good estimation
of the elevation and azimuth angles with the ESPRIT, the
estimation error of the “virtual electrical angles” (i.e.,
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) causes the CCM-ESPRIT [4] to have un-
successful pair-matching and worse DOA estimation at low
to moderate SNRs in this empirical scenario as plotted in
Fig. 2(a) and (b). On the other hand, as discussed in Remarks
1–3 and shown in Fig. 2(b), although the eigendecomposition
is used in the MPM [3] and JSVD [5], the former with correct
pairing [3] gives the estimate of elevation or azimuth angle with
larger RMSE regardless of SNR owing to the biased estimate

in (43), and the latter [5] has larger RMSE at high SNR due
to the inaccurate estimate caused by the finite number of
snapshots, while the SUMWE [10] performs worse because
of the reduced working array aperture, and the OPM [9] has
larger RMSE at low SNR as a result of the influence of additive
noises, where the correct pair-matching is imposed on the
results of these methods.

However, because the impact of additive noises is mitigated
and the array data received by two ULAs are utilized more ef-
fectively and efficiently as shown in (6) and (16) [i.e., (28) and
(29)], the proposed CODE method uses the cross-correlation
matrix in (3) between two ULAs and its variants ,

, and to estimate the azimuth and elevation angles
separately, and it generally performs better than the 2-D DOA
estimation methods developed for the L-shaped array in the
plane such as the MPM with correct pairing [3] and the JSVD [5]
and the ordinary subspace-based methods such as the OPM [9]
and the SUMWE [10] as plotted in Fig. 2(b), while it has similar
performance to the root-MUSIC with correct pairing [43], [44],
[47] at moderate and high SNRs, where the computationally
burdensome eigendecomposition is also avoided in the CODE
method. We note that the root-MUSIC and the JSVD provide
relatively better estimate at very low SNR due to the noise sup-
pression with eigendecomposition and correct pair-matching.
Further the empirical RMSE of the proposed method for is
very close to the theoretical one given by (30) and (31) (except
at very low SNR, and their difference is almost indistinguish-
able), and the difference between the theoretical RMSE and the
CRB is small. Additionally, as demonstrated in Fig. 2(a), we can
see that the proposed CODE method outperforms the CCM-ES-
PRIT [4] in pair-matching at low SNR. The results for are
similar and are omitted here.

5) Example 2—Performance Versus Number of Snapshots:
Then we test the performance of the proposed method in terms
of the number of snapshots. The number of snapshots is varied
from 10 to 1000, and , while the other simulation
parameters are the same with those in Example 1.

As shown in Fig. 3(a) and 3(b), even when the number of
snapshots is rather small, the proposed CODE method gen-
erally outperforms the JSVD with automatic pairing [5], the
CCM-ESPRIT [4], and the MPM with correct pairing [3], and
it also performs well than the ordinary 1-D methods such as the
OPM [9] and the SUMWE [10] with correct pairing, because
of the good use of the cross-correlations and working array
aperture. The root-MUSIC [43], [44], [47] performs better than
the other methods due to the use of EVD and correct pairing
as described in Example 1. Furthermore we also find that the
empirical RMSE agrees very well with the theoretical one
derived for larger number of snapshots in Section IV (except
for a small number of snapshots).

Fig. 3. (a) Detection probability. (b) RMSE of � ��� versus the number of
snapshots for two uncorrelated signals (dash-dotted line with “�”: root-MUSIC
with correct pairing; “�”: OPM with correct pairing; “ ”: SUMWE with cor-
rect pairing; solid line: JSVD; dashed line: MPM with correct pairing; dashed
line with “x”: CCM-ESPRIT; solid line with “�”: proposed method; dotted line:
theoretical RMSE of proposed method; and dash-dotted line: CRB) in Example
2 (��� � � 	
, � � �, �� � � 
 � ��� � �� 
, and �� � � 
 � ��� � �� 
).

6) Example 3—Performance Versus Correlation Factor:
Here we evaluate the performance of the proposed method
against the correlation between the incident signals. The signal

is a superposition of two uncorrelated signals and
with equal power given by

(57)

where the magnitude of the correlation factor is varied be-
tween 0 and 0.9. The other parameters for simulation are similar
to those in Example 1, except that .

As shown in Fig. 4(a) and (b), the proposed CODE method
outperforms the CCM-ESPRIT [4] in pair-matching, and it is
generally superior to the other methods such as the JSVD with
automatic pairing [5], the CCM-ESPRIT [4], and the MPM
with correct pairing [3], the OPM with correct pairing [9] and
the SUMWE with correct pairing [10] in DOA estimation for
uncorrelated and weakly correlated signals, but its estima-
tion performance degrades significantly with the increasing
correlation factor between the incident signals, because the
decorrelation preprocessing is not employed. We also see that
the root-MUSIC [43], [44], [47] has good estimation perfor-
mance at low and relative high correlation factor because of the
use of EVD and correct pairing, while the SUMWE tends to
perform well for high correlated signals because of the subarray
averaging.

7) Example 4—Performance Versus Angular Separation: Fi-
nally we assess the performance of the proposed method against
the angular separation between two incident signals. In this ex-
ample, three cases are considered, where the azimuth and eleva-
tion angles of the signal are set to: 1) and

; 2) and , and (3)
and with , , and is varied
from 1 to 16 , while the other simulation parameters are the
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Fig. 4. (a) Detection probability. (b) RMSE of � ��� versus the correlation
factor of two signals (dash-dotted line with “�”: root-MUSIC with cor-
rect pairing; “�”: OPM with correct pairing; “ ”: SUMWE with correct
pairing; solid line: JSVD; dashed line: MPM with correct pairing;dashed
line with “x”: CCM-ESPRIT; solid line with “�”: proposed method; dotted
line: theoretical RMSE of proposed method; and dash-dotted line: CRB) in
Example 3 (��� � � 	
, � � ���, � � �, 
� � � � � 
�� � �� �, and

� � � � � 
�� � �� �).

Fig. 5. (a) Detection probability. (b) RMSE of � ��� versus the azimuth an-
gular separation between two signals (dash-dotted line with “�”: root-MUSIC
with correct pairing; “�”: OPM with correct pairing; “ ”: SUMWE with cor-
rect pairing; solid line: JSVD; dashed line: MPM with correct pairing; dashed
line with “x”: CCM-ESPRIT; solid line with “�”: proposed method; dotted
line: theoretical RMSE of proposed method; and dash-dotted line: CRB) in Ex-
ample 4 (��� � � 	
, � � ���, � � �, 
� � � � � 
�� � �� �, and

� � � � � 
�� � � � ���).

same with those in Example 1, except that the SNR is fixed at
.

The detection probabilities and the empirical RMSEs of
in terms of the azimuth angle separation , the eleva-

tion angle separation and the azimuth and elevation angle
separation for the aforementioned cases are plotted in Figs. 5,
6 and 7, respectively. As described above, the proposed CODE
method uses the cross-correlations between the array data
received by two ULAs along the and axes simultaneously

Fig. 6. (a) Detection probability. (b) RMSE of � ��� versus the elevation an-
gular separation between two signals (dash-dotted line with “�”: root-MUSIC
with correct pairing; “�”: OPM with correct pairing; “ ”: SUMWE with cor-
rect pairing; solid line: JSVD; dashed line: MPM with correct pairing; dashed
line with “x”: CCM-ESPRIT; solid line with “�”: proposed method; dotted
line: theoretical RMSE of proposed method; and dash-dotted line: CRB) in Ex-
ample 4 (��� � � 	
, � � ���, � � �, 
� � � � � 
�� � �� �, and

� � � � � 
� � ��� �� �).

Fig. 7. (a) Detection probability. (b) RMSE of � ��� versus the azimuth and el-
evation angular separation between two signals (dash-dotted line with “�”: root-
MUSIC with correct pairing; “�”: OPM with correct pairing; “ ”: SUMWE
with correct pairing; solid line: JSVD; dashed line: MPM with correct pairing;
dashed line with “x”: CCM-ESPRIT; solid line with “�”: proposed method;
dotted line: theoretical RMSE of proposed method; and dash-dotted line: CRB)
in Example 4 (��� � � 	
, � � ���, � � �, 
� � � � � 
�� � �� �, and

� � � � � 
� ���� � � ���).

to estimate the azimuth and elevation angles and to match the
pair of estimated azimuth and elevation angles, consequently
its performances of DOA estimation and pair-matching become
worse, when the incident signals become closely spaced in
two dimensions of azimuth and elevation angles [i.e., case
(3)], where the ranks of both array response matrices
and tend to collapse. However, the proposed method
generally pairs the estimated azimuth and elevation angles
well than the CCM-ESPRIT [4] for small angular separations
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as shown in Figs. 5(a), 6(a), and 7(a), though the latter [4]
provides the DOA estimates with smaller RMSEs for some
relatively small angular separations as shown in Figs. 5(b),
6(b) and 7(b), because it employs the ESPRIT with EVD [32]
to estimate the azimuth and elevation angles from the array
data of only one ULA independently. Furthermore when the
angular separation becomes large, the empirical RMSEs agree
very well with the theoretical RMSEs derived in Section IV and
are commensurate with the quality of pair-matching shown in
Figs. 5(a), 6(a), and 7(a), while they are much closer to that of
the root-MUSIC [43], [44], [47] with EVD and correct pairing
and smaller than that of the other methods [3]–[5], [9], [10]. We
also see that these methods [3]–[5], [9], [10], [43], [47] provide
DOA estimates with smaller RMSEs for some small angular
separations because of the use of eigendecomposition in the
root-MUSIC with correct pairing [43], [47], the MPM with
correct pairing [3] and the JSVD [5] or due to the independent
estimation of the azimuth and elevation angles from the array
data from only one ULA in the OPM with correct pairing [9]
and the SUMWE with correct pairing [10].

VI. CONCLUSION

A new computationally efficient subspace-based CODE
method without eigendecomposition was proposed for 2-D
DOA estimation of noncoherent signals impinging on the
L-shaped sensor array, and the explicit expressions of asymp-
totic MSE of the estimated elevation and azimuth angles were
derived. The simulation results showed that the proposed
CODE method has less computational burden and superior
estimation performance with high probability of successful
pair-matching with a small number of snapshots and at low
SNR and the theoretical analyzes agree well with empirical
results.

APPENDIX A
PROOF OF LEMMA

First, we examine the statistical performance of the es-
timate in (13). By dividing in (2) and in (4)
into two parts as , and

, where ,

,

, and
, from (3), (5), (6),

(9), and (27), we have

(A1)

(A2)

where

(A3)

(A4)

(A5)

(A6)

Then by using the well-known formula for the expectation of
four Gaussian random vectors with zero-mean and compatible
dimensions (e.g., [38])

where and , and by
performing some straightforward manipulations under the basic
assumptions on the data model, we can get

(A7)

where

(A8)

with , and
. In a similar

fashion, we easily obtain

(A9)

(A10)

(A11)

where ,

,

and

with

, and
.
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Since the received signals and are tem-
porally complex white Gaussian random processes under the

model assumptions and in (A1) is the time-average of
the products and for ,

we can see that in (13) tends to be “slowly” time-
varying with respect to (w.r.t.) and
(i.e., and ) and hence it is “almost” independent of

and (i.e., ) (cf. [40]). Then

following the fact and by applying
the averaging principle (e.g., [41] and [42]), we can obtain

(A12)

Hence from (A12), (A1), (A7), and (A9), we can approximate

the expectation of the inverse matrix in (13) as

(A13)

Similarly we can find that in (13) is “almost” inde-

pendent of and (i.e., in (13))
(cf. [40]), from (A2), (A10)–(A13), and (13), and consequently
we can get

(A14)

Thus as the number of snapshots tends to infinity, from (A14),
we have

(A15)

i.e., the LS estimate in (13) is asymptotically consistent.
Therefore it follows from (A15) that the cost func-

tion in (11) converges to the true cost function
w.p.1 and uniformly in when

, where , and the minima of
are achieved if and only if . Thus the estimates
approach the true parameters w.p.1 as .

Furthermore the consistency of the estimate can be estab-
lished in a similar way, i.e., the estimates approach the true
parameters w.p.1 as .

APPENDIX B
PROOF OF THEOREM 1

Because the estimated azimuth angle is obtained by mini-
mizing the cost function in (11) and it is a consistent esti-
mate for a sufficiently large number of snapshots , we can ob-
tain the second-order approximation of the derivative of
about the true value as (cf. [10], [45], [46], and references
therein)

(B1)

where the second- and higher order terms in (B1) can be ne-
glected, and the first- and second-order derivatives of with
respect to the scalar variable are given by

(B2)

(B3)

in which . From (B1)–(B3), we can obtain by
performing a length but straightforward derivation leads to the
first-order expression for the estimation error
can be obtained as

(B4)

where the estimated orthogonal projector in the denominator
of (B4) (i.e. (B3)) can be replaced with the true one without
affecting the asymptotic property of estimate [10], [45], [46].
Furthermore the estimated orthogonal projector in (B4) can
be approximated as [10], [46]

(B5)

Then by substituting the approximation of in (B5) into
(B4) and using the fact that , the estima-
tion error in (B3) can be approximately given by

(B6)

where

(B7)
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Consequently because the estimate is consistent, from (B6),
the MSE (or variance) of the estimation error is given by

(B8)

where the fact that
is used implicitly.

By utilizing the partitions in (7) and (9), we can rewrite in
(B7) as

(B9)

where

(B10)

By substituting the approximation of the matrix in (B10)
into in (B9) and from (9), (3), and (5), we can get

(B11)

where

(B12)

(B13)

Then from (B11), the two terms of in (B8) can be
obtained as

(B14)

(B15)

Under the basic assumptions on the data model, and by using
the well-known formula for the expectation of four Gaussian
random variables with zero-mean (e.g., [38])

and considering the fact that spans the null space of
(i.e., ), from (3) and (5), we get

(B16)

(B17)
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(B18)

(B19)

(B20)

(B21)

Therefore by substituting (B16)–(B21), (B14), and (B15) into
(B8) and performing some straightforward manipulations,

of the estimated azimuth angle in (30) can be
readily obtained.

In the similar way, of the estimated elevation angle
in (31) can be established immediately.
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