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Subspace-Based Adaptive Method for Estimating
Direction-of-Arrival With Luenberger Observer

Jingmin Xin, Senior Member, IEEE, Nanning Zheng, Fellow, IEEE, and Akira Sano, Member, IEEE

Abstract—In this paper, we propose a computationally simple
and efficient subspace-based adaptive method for estimating direc-
tions-of-arrival (AMEND) for multiple coherent narrowband sig-
nals impinging on a uniform linear array (ULA), where the previ-
ously proposed QR-based method is modified for the number de-
termination, a new recursive least-squares (RLS) algorithm is pro-
posed for null space updating, and a dynamic model and the Lu-
enberger state observer are employed to solve the estimate associa-
tion of directions automatically. The statistical performance of the
RLS algorithm in stationary environment is analyzed in the mean
and mean-squares senses, and the mean-square-error (MSE) and
mean-square derivation (MSD) learning curves are derived explic-
itly. Furthermore, an analytical study of the RLS algorithm is car-
ried out to quantitatively compare the performance between the
RLS and least-mean-square (LMS) algorithms in the steady-state.
The theoretical analyses and effectiveness of the proposed RLS al-
gorithm are substantiated through numerical examples.

Index Terms—Adaptive filtering algorithm, direction-of-arrival
(DOA) estimation, learning curve, Luenberger observer, state esti-
mation, transient analysis.

I. INTRODUCTION

UBSPACE-BASED direction-of-arrival (DOA) estimation
methods including the traditional methods with eigende-
composition and the computationally efficient methods without
eigendecomposition have been well studied owing to their rel-
ative simplicity and high-resolution capability (see, e.g., [1],
[2] and references therein). However, these methods usually
fail or degenerate in some applications, where the directions
of incident signals are time-varying with crossover points on
their trajectories, and/or some incident signals appear and dis-
appear sometimes (see, e.g., [40]). For recent three decades, the
problem of estimating the DOAs of multiple moving incident
signals has attracted much attention [3]-[15].
By making use of the stochastic dynamic models with
several kinematic parameters such as the angular velocity and
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acceleration, some Kalman state estimation based algorithms
were developed for the tracking of the crossing directions
(e.g., [5], [10]-[13], [15], and [35]), where the crux is the
estimate association, which indicates the correct association
between the DOA estimates of different incident signals at two
successive time instants (i.e., the so-called “data association”
[4], [47]). In these algorithms, the directions are generally
assumed to be slowly time-varying, while the additive process
and measurement noises are assumed to be white Gaussian
noise and the direction tracking problem is usually divided
into two sequential procedures [13]. First, in the localization
procedure, the initial estimates of the directions are obtained
from the time-averaged statistics of array data during a limited
interval by using a traditional batch method such as the com-
putationally cumbersome maximum-likelihood (ML) methods
[12], [13], [15], [22] or the subspace-based MUSIC with
eigendecomposition [11], [33]. Then in the tracking procedure,
these initial estimates are used as “measurements” of directions
and refined by employing the Kalman filtering [23], [26]. By
utilizing the recursive least-squares (RLS) based projection
approximation subspace tracking with deflation (PASTd) [16]
to accomplish the DOA estimation in the aforementioned local-
ization procedure, where the computationally burdensome and
time-consuming eigendecomposition is avoided, a relatively
efficient subspace and state estimation based algorithm was
proposed for DOA tracking of uncorrelated signals [17].

In fact, there are two important issues in state estimation
based direction tracking: choice of dynamic direction model
and computation of filter gain [5]. Unfortunately, a mathemat-
ical model representing the direction trajectory is usually not
exact (even in the statistical sense) [5]. In attempt to compensate
for modeling errors and measurement excursions, some simpli-
fied or sophisticated models for direction dynamics with dif-
ferent dimension are used in the literature (cf. [4], [13], and
[14]). When the additive process and measurement noises in
the stochastic dynamic model of direction have the Gaussian
probability distribution, the Kalman filtering can provide the op-
timal and time-varying filter gain for state estimation [26], [27].
Nevertheless, the Kalman filtering depends on the statistical
property of the additive process and measurement noises, which
are usually unknown in direction tracking, and further these
noises are hardly the strictly “white” noise [5]. Although several
elaborate procedures (such as the asymptotic Cramér-Rao lower
bound (CRB) of DOA estimation [22]) were suggested for ap-
proximate estimation of the noise variances (e.g., [4], [11], [15],
[17], [20], [21], [35]), but they may increase the computational
burden and result in performance degeneration because of the
inherent sensitivity of Kalman filtering to the modeling errors
[14].

1053-587X/$26.00 © 2010 IEEE
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Furthermore in the algorithms aforementioned, the coherent
(i.e., fully correlated) signals are not considered, and the number
of incident signals is assumed to be fixed and known a priori. In-
spired by the subspace-based method without eigendecomposi-
tion (SUMWE) for direction estimation of the coherent narrow-
band signals impinging on a uniform linear array (ULA) [2], we
proposed an adaptive bearing estimation and tracking (ABEST)
algorithm [18], where the least-mean-square (LMS) or normal-
ized LMS (NLMS) algorithm is used to obtain the null space.
Unfortunately, the tracking of the number of incident signals
and that of crossing directions were not considered.

Therefore, the objective of this paper is to investigate the
problem of tracking the crossing directions in a computationally
efficient way, when the number of incident signals is unknown.
On the bases of the previously proposed batch SUMWE [2] and
the method for estimating the number of signals without eigen-
decomposition (MENSE) [34], a new subspace-based adaptive
method for estimating DOAs (AMEND) is proposed for the
coherent narrowband signals impinging on a ULA, where the
number of signals is detected by using the QR-based MENSE,
the null space is updated by using a RLS-based algorithm and
is introduced into the approximate Newton iteration to obtain
the “measurements” of directions in the localization procedure,
and then the Luenberger observer [24], [25] with the three-di-
mensional deterministic dynamic direction model is employed
to refine the estimated directions in the tracking procedure. In
the proposed method, the Luenberger observer gain is designed
through the pole placement by considering a compromise be-
tween the rapidity of the observer response and the sensitivity
to the unmodelled disturbances and measurement noises in the
dynamic direction model, and computation formula of the ob-
server gain is clarified, while the estimation of noise variances
required by the ordinary Kalman filtering and the estimate as-
sociation of directions are avoided. Moreover we give a vari-
ation of the AMEND algorithm with “self-initialization” for
the scenario, where some incident signals appear and disap-
pear abruptly. By adopting the averaging principle (e.g., [26],
[36], [37]), the statistical performance of the proposed RLS
algorithm in stationary environment is analyzed in the mean
and mean-squares senses, and the mean-square-error (MSE) and
mean-square derivation (MSD) learning curves are derived ex-
plicitly. Furthermore an analytical study is carried out for the
quantitative performance comparison between the RLS algo-
rithm and the previously proposed LMS algorithm [18] in the
steady state. Finally, the theoretical analyses and effectiveness
of the proposed AMEND algorithm are verified and substanti-
ated through numerical examples.

II. PROBLEM STATEMENT

A. Array Data Model and Assumptions

We consider a ULA of M identical and omnidirectional sen-
sors with adjacent spacing d and assume that p narrowband
signals {s;(¢)} impinge on the array along distinct directions
{6;(t)} from far-field. The received noisy signal y.,(t) at the
mth sensor can be Sxpressed as

ym(t) = 3 si(t) 0T 4wy (1)
=1
=b,,,(0)s(t) + wm(t) (1)
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[eiwo(m=D7(01 (1)) giwo(m—1)7(62(1))
eden(m=Dr T () 2 sy (1),5a(0), .., 5],
wo = 27fy, T(H Z( ) & (d/c)sinb;(t), ¢ and fo are the
propagation speed and the center frequency, and w,,(t) is the
additive noise, while d satisfies 0 < d < A/2 for avoiding spa-
tial aliasing, and ) is the carrier wavelength given by A = ¢/ fo.

In this paper, we make the following basic assumptions on

the data model.

1) The incident signals {s;(¢) } are temporally complex white
Gaussian random processes with zero-mean and variance
given by E{s;(n)sf(t)} = 7,00, and E{s;(n)s;(t)} =
0Vn,t, where E{-}, (-)*, and ¢,, ; denote the statistical ex-
pectation, the complex conjugate, and the Kronecker delta
function which is equal to unity when n = ¢ and zero oth-
erwise. The source signal covariance matrix R is defined
by R, £ E{s(t)s"(t)}, where () denotes the Hermitian
transpose, and the rank of Ry is given by rank(R,) = 1
when the signals {s;(¢)} are coherent.

2) The additive noises {w.,(t)} are temporally and spatially
complex white Gaussian random process with zero-mean
and variance given by E{w,,(n)w}(t)} = 028, x6n.¢ and
E{wpm(n)w(t)} = 0V¥m, k and Vn, t, and they are uncor-
related with the incident signals {s;(¢)}.

3) For tracking the time-varying directions, we assume that
6;(t) is slowly varying (relative to the sampling rate 1/7%)
so that 0;(t) = 6;(nT) fort € (nT,(n + 1)T] and n =
0,1,... and that N, snapshots of array data are available
over an interval 7" of direction updating, i.e., T = N,T
(e.g., [11], [17]).

4) The number of incident signals p satisfies the inequality
that p < M/2 for an array of M sensors.

Then the array data model in (1) can be compactly reex-

pressed as

where b, (9) =
e,

y(k) = A(0(n))s(k) + w(k) @
fork=nNs+1,nNs+2,...,(n+1)Nyandn =0,1,2,...,
where y( ) 2 (k) k). - yar (R wlk) 2 o (k),
wo(k)y ..., war(k)]T, and A(6O(n)) is the array response ma-
trix given by A(6( a(f2(n)), ...

n) 2 [a(6y(n), a(f,(n)]
with a(f;(n)) = |1, 61“07(9 M) edwoM=1)r(@:(m)]T,
Hence the direction tracking is formulated as the adaptively
estimating the directions {;(n)} of the incident signals for
n = 0,1,2,... from N, snapshots of {y(k)} measured at
k=nNs;+1,nNg+2,...,(n+ 1)Ns while maintaining the
correct association between the current estimate 9Z(n) and the
previous estimate él(n — 1) of the same incident signal.

B. Deterministic Dynamic Model of Direction Trajectory

By letting the angular velocity and acceleration of the direc-
tion 6;(n) at the instant n be 6;(n) and f;(n) and denoting the
corresponding state vector as z;(n) = [0;(n),0;(n),0;(n)]7,
the slowly time-varying trajectory of direction #;(n) can be ap-
proximately expressed by a deterministic state model with con-
stant acceleration in the absence of process and measurement
noises as

z;(n+ 1) = Fx;(n) 3)
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and the direction 6,(n) can be measured from the state vector
z;(n) by

0;(n) = e''z;(n) 4

where F and ¢ are the transition matrix and measurement vector
given by [4], [11]

1 T 0577
F2£l0o 1 T (5)
0 0 1
and ¢ = [1, 0, 0]7.
In this paper, we focus our attention on the RLS-based sub-
space updating for direction estimation by using (2) and on
the Luenberger state observer based tracking of directions with

crossing by using (3) and (4). Furthermore the statistical anal-
ysis of proposed RLS algorithm will be studied in details.

III. RLS-BASED SUBSPACE UPDATING

Since the LMS algorithm is an approximation method based
on the gradient descent technique, its convergence is relatively
slow though it has the simplicity and computational efficiency,
while the RLS algorithm offers an exact solution of the least-
squares (LS) solution at each instant by using the exponentially
weighted criterion and provides considerable improvement in
convergence behavior and tracking capability [26], [27]. Here
we investigate a new RLS-based algorithm for subspace up-
dating, where the number of signals p is assumed to be known
in this Section.

A. Principle of On-Line Direction Estimation

From (2), by dividing the array into L overlapping subar-
rays with p sensors forwards and backwards and defining
the signal vectors of the [th forward/backward subar-

A T
rays as ypu(k) = [w(k),yra(k), - yrap-1 (R)]" and
yu(k) = [?/J\I—l-{-l(k)»?JM—l(k)w--vyL—l+1(k)]H, we can
obtain four Hankel instantaneous correlation matrices at the
instant k as [18]

@ (k) :Yf(k)y}ku(k),7§ (k ):Yf( Jyi(k) — (6)
=Yy (k)yi(k), ®u(k) =

where Y5 (6) 2 fy (k) ypa(0). oy (W], (F)
= [yf2(k)7yf3(k)7 cee 7ny(k')]T7Yb(k) = [Z'lb1(k)7?lb2(k)7

Y1 (BT Yo(k) = [ype(k), 9y3(k), -9y (k)]", and
L = M — p + 1. By dividing these (M — p) x p matrices in
(6) and (7) into the p x p and (M — 2p) X p submatrices in the
downward direction

@y (k) = P (k) + E, (k) ©)
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(F)], @2 (k)
);

) ’ b 2
D)), Eo(k) £ —QTG(k
n(R)W g (k), yf(k)Wf(k)vyl(k) b(k), ynr
2 wp(k), wra(k), ... wip_1(k)
["”fZ k) wys (), s (KT, Wy (k)
w1 (k)] Wi (k) 2 fwsa(k). wis (k).
- wpr (F)]T = [wi(k), wiga(k), ..., wipp—1(k)]",
wbl(k) é [’w]\[ l+1(k) WHr— l(k) ..... ,Wr,— 1+1(k)]H, and P
isap x (M — 2p) linear operator (i.e., “weight” hereafter),
which satisfies the following relation for direction estimation
(18], [19]

(
I

1>, HEE,V (>

QYA =0(rr—2p)%p (10)

where Q = [P', —Iy/_5,]7, A is the submatrix of A(f(k))
consisting of its first M — p rows, Oy, x4 and I,,, denote the
m X g null matrix and m X m identity matrix. Clearly the
columns of @ form a basis for the null space of AH, and
it implies that lga(f) = 0(a—pyx1 for 6 = 0;(k), where
Il is the orthogonal projector onto this subspace, which is
required for good performance of direction estimation (cf.
[2], [16], [19], [43]) and given by II; = Q(Q7Q) 'Q¥,
and a(f) = [1,e707®) , eiwo(L=27O]T Aq a result, the
incident directions {6;(k)} can be estimated by minimizing the
cost function [2]

£(0) = a"(0)q a(h).

Remark 1: Under the assumptions on data model, by taking
expectation on the both sides of (9), we obtain

Y

&, — P,

where ®; and ®, are the p x 4p and (M — 2p) x 4p sub-
matrices of the correlation matrix ® con51st1ng of its first p
and last M — 2p rows, respectlvely, ® = (@, <I>f,<I>b,<I>;,]
®; = Adiag(R.b;,(0))A], ®; = ADdiag(R, b*(H))AlT,
®, = AD MY(diag(R.b1(0)))* AT, &, = AD- M2
(diag(Rub3,(0)" AT, A 2 [b(8),bs(0). ....barp(9)]",
Ar 2 [b1(0),b2(0),...,b,(0)]7, D = diag(h(6)), and
diag(-) denotes the diagonal operation which extracts the
diagonal of a matrix as a vector or constructs a diagonal ma-
trix with the elements of a vector. It is worthy to note that
the sth element of vector Rb),, in above can be expressed
s (Rsb:): = S0 g, e doom=0r00) £ 0 in view of
the facts that r5,, # O for¢ = 1,2,...,p, where 7, is the
cross- -correlation between the signals s;(k) and s;(k) defined by
re, = E{si(k)s}(k)}. Clearly the ranks of two Vandermonde
matrices A and Al are given by rank(A) = min(M —p,p) = p
and rank(A4;) = min(p,p) = piff p < M/2, while the p x p
diagonal matrices diag(Rsby,(9)), diag(Rsbi(#)), and D
have full rank no matter if the incident signals are coherent or
not. Hence we find that the ranks (i.e., the dimension of signal
subspace) of these (M — p) X p matrices @y, ¢i>f, ®,, and
®, equal the number of signals irrespective of the statistical
correlation between the incident signals, and correspondingly
the cost function in (11) and the following AMEND algorithm
are still applicable when there exists uncorrelated incident
signal(s). O
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B. RLS Algorithm for Null Space Updating

~ From (9), by introducing an (M — 2p) x 4p estimation error
E(3) as

E(i) 2 ®5(i) — P (k)®1 (i)

for 1 < i < k, we can define a cost function Jrr,s(k) for
estimating the instantaneous linear operator P(k) as

12)

SN EG |5 + AR PE(R)E,P(R)} (13)

i=1

Jris(k) £

where -y is the forgetting factor given by 0 < ~ < 1, which
is used to exponentially weight the influence of past data less
heavily than that of more recent data, ¥,, is a p X p positive-def-
inite regularization matrix to stabilize the estimation at each in-
stant k, which can be interpreted as a soft constrained initializa-
tion in the LS criterion, while ||- ||§, and tr{-} denote the square
of the Frobenius norm and the trace operation. By letting the
instantaneous gradient matrix of Jrrs(k) in (13) with respect
to (w.r.t.) the liner operator P(k) be zero, i.e., VJrrs(k) =
20Jris(k) /OP* (k) = Opx(a1—2p). We can get the regularized
LS estimate of P(k) at the instant & with the available received

array data {y(i)}*_; as
P(k) = @7 (k)% (k)

where the sample exponentially weighted auto-correlation and
cross-correlation matrices W1 (k) and Wo(k) are given by

k
DEDIEL O
=1

(14)

&7 (i) + 1",

Wy (k- 1) + B, (k)" (k) (15)
k
U, (k) 2 Zv’“‘ifbl(i)@f(i)
=Wy (k — 1) + & (k)®Y (k). (16)

By taking use of the well-known matrix inversion lemma
(e.g., [26] and [27]) to \Ill_l(k) of ¥y (k) in (15), we obtain

Uy (k) 2w (k)

NI, - GR)@T () ¥i(k—1)  (17)

where G(k) is referred as the p x 4p gain matrix given by

G(k) £y~ 0y (k - 1)‘1’1(1€)~
(L + 7@ (k)W (k — 1)@ (k)

=, (k)®, (k).
Then by substituting the recursions (15) and (16) into (14) with

(17) and (18), the LS estimate f’(k) can be rewritten in recursive
form as

(18)

P(k) =701 (k)Ts(k — 1) + G(k) s (k)
(Lsy — G(R)®{ (k))P(k — 1) + G(k)®5' (k)

1 (k)
P(k—1)+ G(k)EH (k)

19)
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TABLE I
SUMMARY OF RLS ALGORITHM FOR NULL SPACE ESTIMATION AND
COMPUTATIONAL COMPLEXITY IN MATLAB FLOPS

Initialization:

P(0) = Opx(r—2p) and ¥1(0) =
Step 1: Updating of matrix ¥ (k) as
Cik) = (k- 1)+ @1 (k)B] (k)

.............................................. 32p3 + 6p? flops
Step 2: Performing QR decomposition of ¥ (k) as

i(k) = Qk)R(K)

e 24p3 + 4p? 4 22p — 50 flops
Step 3: Updating of gain matrix G(k) as

G(k) = inv{R(K)}Q" (k)®1(k)

.................................. 40p® + p(p + 1)(p + 2) flops
Step 4: Filtering of estimation error E (k) as

E(k) = ®2(k) — P7 (k — 1)@ (k)

e 32p% (M — 2p) + 8p(M — 2p) flops
Step 5: Adaptation of “weight” P(k) as
P(k) =Pk —1)+Gk)E" (k)

........................... 32p% (M — 2p) + 2p(M — 2p) flops

where E (k) is a priori estimation error defined by

E(k) 2 &y(k) — P" (k — 1)® (k) (20)
which is “tentative” value 2f a posteriori estimation
error E(k) = ®y(k) — P (k)®(k) before updating,

where E(k) is equal to E(i) in (12) for i+ = k, and
E(k) = E(k)(Is, — G" (k)®(k)). Herein we make an
assumption that the current weight matrix P(k — 1) is statisti-
cally independent of the current correlation matrices ®; (k) and
®, (k) as usually assumed in the adaptive filtering literature (cf.
[18], [26], [27], and references therein).

Thus by performing the QR decomposition on ¥ (k) in (15)
to alleviate the computational complexity in the calculation of
gain matrix in (18) due to the matrix inversion, the RLS algo-
rithm for updating liner operator P(k) and the computational
complexity in MATLAB flops can be summarized in Table I,
where Q(k) and R(k) are the p X p unitary matrix and upper-tri-
angular matrix, inv{-} denotes the inversion operation of an
upper-triangular matrix with back-substitution (cf. [18]), and a
flop is defined as a floating-point addition or multiplication op-
eration as adopted by MATLAB software.

Remark 2: The forgetting factor v should be chosen with a
compromise in terms of convergence rate, tracking, misadjust-
ment and stability, and Leg 21 /(1 — ) is referred to as the
effective window length, which measures the memory of the
algorithm, and + is usually chosen close to one for achieving
good tracking performance and reducing the sensitivity to addi-
tive noise (e.g., [27], [28], [31]). O

Remark 3: Choosing ¥, has the effect of weighting the ini-
tial matrix P(0), where larger value of ¥, implies more con-
fidence in P(0) (i.e., forcing P(k) closer to O, (r—2p)) and
slows down the convergence of algorithm [32]. ]
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As aresult of the above RLS algorithm, we obtain the instan-
taneous orthogonal projector II(k) at the instant k of I in (11)

(k)
= QUk)(Ins—sp — P (W)inv{R}Q" P(k))Q" (k) (21)

where Q and R are the QR decomposition factors of
A AH
P(k)P (k) + I,. Hence from (11), we can update the

directions with the approximate Newton iteration [18]
~H _

dulky=0u(k — 1)~ oA OMBaO)}

d” (0)IL(k)d(6)

(22)
6=>0;(k—1)

where Re{-} denotes the real part of the quantity, and d(#) =
jwo(d/c) cos 8]0, 70O (L — 2)eiwo(L=27(O)T
Remark 4: The total number of MATLAB flops required by
the proposed RLS algorithm shown in Table I is roughly 64(M —
2p)p* +10(M —2p)p+97p>+13p? +24p—50. Clearly the RLS
algorithm needs 97p® — 11p? + 24p — 50 more MATLAB flops
than the LMS algorithm proposed in [18], and the computational
complexity of the RLS algorithm is approximately equivalent to
that of the NLMS algorithm [18]. O

IV. DIRECTION TRACKING ALGORITHM

In general, a key issue in direction tracking of multiple sig-
nals is the estimate association, which implies the correct as-
sociation of estimated DOAs of different signals at two suc-
cessive time instants (e.g., [3]), and some Kalman state esti-
mation based parametric tracking methods were proposed for
the directions with crossings [10]-[13], [15], [17], [35]. In these
methods, the preliminary state estimates including the estimated
DOAs (i.e., “measurements”) are refined by Kalman filtering,
which incorporates dynamic models of parameters of interest
such as the angular velocity and acceleration to automatically
paired with the estimated DOAs at different time instants and
to avoid the tremendous computational burden of traditional es-
timate association (cf. [3], [4]). However the Kalman filtering
involves the estimation of the variances of additive processes
noise and measurement noise, which are usually unknown in
direction tracking.

In this paper, we propose a new state estimation based direc-
tion tracking algorithm by introducing a deterministic dynamic
state model of the direction trajectory and utilizing the Luen-
berger observer [24], [25], where the state vector consisting of
the direction, angular velocity and acceleration of each signal is
predicted from the existing estimated state vector by using the
Luenberger observer, and the measurement of direction is ob-
tained from the most recent updated subspace and the predicted
direction by using the approximate Newton iteration. Then the
predicted state vector (including the predicted DOA) is refined
by the Luenberger observer with the estimated measurement
of DOA, where the computationally burdensome estimate as-
sociation is avoided. Similarly to the Kalman filtering in DOA
tracking, the Luenberger observer has a double role: filtering
the measurements and providing the predicted directions to the
Newton iteration, and the association between the estimated
DOAs at two successive instants of direction updating is em-
bedded in the DOA estimation with the Luenberger observer,
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however the estimation of the variances of additive process and
measurement noises required by the Kalman filtering is elimi-
nated.

A. Luenberger Observer Based State Estimation

Obviously some of the state variables of z(n) in (3) are not
accessible, and it is necessary to estimate them for direction
tracking. Since we easily find that the dynamical system of di-
rection trajectory (F', ¢l in (3) and (4) is observable (cf. [29]
and [30]), by using the measurement 6; (), the Luenberger state
observer (i.e., prediction estimator) of this dynamic system is
obtained

&i(n+1) = Fa:(n) + g,(6:(n) — " (n)

b:(n) =c"#;(n)

(23)
(24)

where g, is called the observer gain, and the difference between
the measured direction f;(n) and the estimated one ¢’ z;(n)
(i.e., the correction term) in (23) is used to reduce the discrep-
ancies between the deterministic dynamic model in (3) and the
actual model of the direction trajectory. By defining the state
estimation error as e;(n) = z;(n) — &;(n), from (23) and (3),
we can get

ei(n+1)=(F —g;c"e;i(n). (25)
Clearly if and only if the magnitudes of all eigenvalues of the
matrix F' — g,icT are strictly less than one, the observer in (23)
and (24) is asymptotically stable, i.e., the estimation error e;(n)
will converge to zero for any initial value of z;(0).

Hence the observer gain g, serves as a weighting vector and
must be designed so that the observer is stable and the estimation
error is acceptably small even though the initial estimate &;(0)
is not equal to the actual state ;(0). The design procedure of
observer gains {g;} is first to choose the desired observer poles
(i.e., the eigenvalues of F — g,cT) and then to decide the gains
{g;} so that they will give the desired poles, where the desired
poles should be selected as one pair of conjugate complex poles
and one real pole within the unite circle in the z-plane (cf. [29],
[30] for the pole placement or assignment technique in control
engineering) (see Appendix for the analytical computation).

B. On-Line Implementation of Algorithm

Therefore by utilizing the MENSE detection criterion
[34], [39] and the RLS-based subspace updating and the
Luenberger observer based state estimation studied above,
as shown in Fig. 1, we can summarize the implementa-
tion of the AMEND for tracking the directions {6;(n)} at
the instant n with the N snapshots {y(k)} measured at
k=nNs+1,nN;+2,...,(n+ 1)Ng forn =0,1,2,... as
follows:

1) (Initialization-1) Set the maximum detectable number of
signals to p = |M/2], and design the gains {g,} of p
observers through the pole placement, where |z| denotes
the largest integer not greater than z. ..... 1+ 61p flops

2) (Initialization-2) For the instant index of direction up-
dating n = 0, by setting the subarray size to p, estimate
the number of incident signals from the N, snapshots of
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Fig. 1. The simplified flowchart of the proposed AMEND algorithm for direc-
tion tracking with Luenberger observer.

{y(k)
by p.
......... 4(4Ns + 3)M + 14(M — p)® + 32(M — p)*p
—3.5(M — p)? 4+ 2(M — p)p + 26.5(M — p) — 4 flops

3) (Inmitialization-3) By setting the subarray size to p, esti-
mate the initial values of directions from the N snapshots
of {y(k )},i"t}N ;1 with the batch SUMWE [2] and denote
them by 6,(0[0) fori = 1,2,...,p.

4(4Ny + 3)M 4+ 8M (M — 2p)? + 8(M — p)?
(M = 2p) + 56(M — 2p)p? + 32p3+2(M — p — 1)® +
O(p°) + O(2(M — p) — 1) flops

4) (Initialization-4) Initialize the I:uenbergAer observer and
the RLS algorithm by #(0|0) = [6,(0]0), 6;(0]0)/N,, 0],
P(0) = Ojx (v—2p) and W1 (0) = Wol;x;, and update
the instant index nton=n+1. ............ ... 1 flops

5) (Observer Prediction) Calculate the Predicted state vector
%;(n|n — 1) and predicted direction §;(n|n — 1) from the
existing estimate of state vector &;(n — 1|n — 1) with the
Luenberger observer in (3) and (4) as

,(cn :?,N 1 with the batch MENSE [34] and denote it

Z;(njn—1) =F%;(n—1jn — 1) (26)
f:(nln —1) =c"&;(n|n — 1). (27)
............................................ 18 flops

6) (Subspace Updating-1) During the interval of direction
updating (nT,(n + 1)T] (ie., & = nNs + 1,nNs +
2,...,(n + 1)Ny), calculate the instantaneous correlation
vectors @(k) between y(k) and y3, (k) and @(k) between
y(k) and yj (k) at the index of sampling instant &

o(k) = y(k)yis (k). @(k) = y(Ryyi (k) (28)
and form the instantaneous Hankel matrices ®  (k), ® 1 (k),
®,(k),and ®, (k) by using (8) and (28), where p is replaced
withp. .................. 16M + 2(M — p)p + 2 flops

7) (Subspace Updating-2) Update the weight P(k) by using
the proposed RLS algorithm shown in Table L

64(M — 2p)p? + 10(M — 2p)p
+97p3 + 13p% + 24p — 50 flops

8) Update the index of sampling instant as k = k + 1, and go
to the next step if & = (n + 1) N;, otherwise return to Step
6).
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9) (Subspace Updating-3) Calculate the instantaneous pro-
jector II(k) with (21) and denote it by II(n). . 8M (M —
2p)2 4 8(M —2p)> +8(M — 2p)p® + 9p° + 3p> + 25 flops

10) (Localization) Calculate the “measurement” of direction
f;(n) by using the projector IT(n) and the predicted direc-
tion f;(n|n — 1) with (22) as

i 5 Re{d” (0)II(n)a(6)}
0:(n) =0;(njn—1) — — -
d" (O()d(6) |, s 1)
(29)
.................. 16(M — p)? + 16(M — p) + 1 flops

11) (Observer Filtering) Calculate the rgﬁned state vector
%;(n|n) and estimate the directions 6;(n) by using the
predlcted state vector &;(n|n — 1), the predicted direction

f;(nJn — 1) and the “measurement” of direction 6;(n)
with the observer in (23) and (24) as

Zi(n|n) =&i(n|n — 1) + g;(6:(n) — i(n|n — 1)) (30)
0i(n) =c"&i(n|n). (31)

7 flops
12) Update the instant index of direction updating asn = n+1,
and go to Step 5).

Remark 5: By taking account of a compromise between
speedy response and sensitivity to the unmodeled disturbances
and measurement noises in the dynamic direction model (3)
and (4), a careful examination of the overall performance of
observer in (23) shows that the desired poles of observer g; can
be selected simply as z;1 = 2%, = K;e’? and z;3 = &;, where
%; is around 0.75, and ¢; is in the region between 9° and 16°,
where the observer has an underdamped response. O

Remark 6: In the Luenberger state estimation shown
in (23) and (24), the state vector %;(n) (and hence 6;(n))
and the measurement 6;(n) are unknown and should
be estimated. In the above-mentioned AMEND  algo-
rithm, the Luenberger state estimation is implemented as:
&i(nn) = Fii(n — 1|n — 1)4g;(8i(n) — fi(njn — 1)), and
correspondingly ;(n) = 6;(n|n—1)+ga (8:(n)—b;(njn—1)).
Obviously the estimate ;(n|n) in (30) is based on the predicted
estimate &;(n|n — 1) in (26), the measured direction 6;(n)
in (29) and the predicted direction él(n|n — 1) in (27), while
the predicted estimate &;(n|n — 1) is based on the existing
estimate Z;(n — 1|n — 1) at the previous (n — 1)th instant,
and the measured direction 6;(n) is the estimate of 6;(n) at
the current nth instant obtained by the approximate Newton
iteration with the array data through II(n) and the predicted
direction f;(njn — 1). As a result, the Luenberger observer
plays important roles of refining (or smoothing) the measured
direction éz(n) obtained from the array data and maintaining
the association between the estimates {f;(n)} at different
instants of direction updating.

Remark 7: In the localization stage, although the con-
ventional subspace-based methods such as the MUSIC (or
spatial smoothing (SS) based MUSIC) with eigendecompo-
sition [33], [44], [45], the SUMWE [2] and the recursion
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subspace-based method (RSM) [46] without eigendecom-
position can be used to estimate the reliable measurements
of DOAs (i.e., {f;(n)}) from the time-averaged statistics of
the array data {y(k)},(citlljz,NH, since the peak picking of
the (SS-)MUSIC/SUMWE/RSM spectrum or the polynomial
rooting of the root-(SS-)MUSIC/root-SUMWE/root-RSM does
not suggest any ordering of the estimated DOAs at contiguous
time instants, hence successive direction estimates at different
time instants from these batch methods cannot be used for
tracking [6], [7], [47]. For the case of p incident signals, there
are p! possible combinations between the estimated DOAs
{6;(n)} and {#;(n — 1)} (i.e., the signals {s;(n)} and the mea-
surements {f;(n)}). This results in a tremendous computational
burden as the number of signals increases. Moreover batch
methods are often difficult to implement because of the memory
and/or time required to process the large amount of data [2],
[6], [47]. Thus without a sophisticated mechanism to correlate
successive estimates of directions, it is not possible to track
the multiple directions simply by repeatedly implementing
the batch subspace-based methods such as the MUSIC, the
RSM and their variations. Therefore the approximate Newton
iteration in (22) is used in the localization stage to estimate
the measurement of direction and to maintain the association
between the estimated directions at successive instants of DOA
updating. O

C. Modified AMEND Algorithm

In many practical situations, some incident signals may ap-
pear and disappear suddenly [40]. Now we modify the above
algorithm and give a variation with “self-initialization”, where
the change in the number of signals is monitored during each
interval (nNy, (n + 1)N,].

(1) Perform the above Steps 1)—4) for initialization.

(2) Perform the above Steps 5)-11) for DOA tracking.

(3) Estimate the number of incident signals from the Ng

snapshots of {y(k) 5::;11]37]\;1 by using the MENSE [34]
and denote it by p(n), where the subarray size is set to
p=|M/2|.

(4) Check whether p(n) = p; if yes, update the instant index
of direction updating as n = n + 1 and go to Step (2);
otherwise set p = p(n) and go to the next step.

(5) Estimate p directions from { y(k)}éltlj\),N_i_l by using the
SUMWE [2] and denote them by ;(n — 1|n — 1), where
the subarray size is set to p.

(6) Initialize the Luenberger observer and the RLS algo-
rithm for the next instant n 4+ 1 as &(n — 1jn — 1) =
[0:(n—1|n —1),8;(n—1|n —1)/N,, 0|7, P(n — 1) =
013><(]\r1—213)’ and \Ill(n - 1) = \I}[]Iﬁxﬁ.

(7) Update the instant index as n = n+ 1, and return to Step
(2).

V. STATISTICAL ANALYSIS OF RLS ALGORITHM IN STATIONARY
ENVIRONMENT

In this section, we investigate the performance of the pro-
posed RLS algorithm in stationary environment, which is a con-
vention of statistical analysis of adaptive filtering theory.

A. Expectation Computation of Inverse Matrix

Due to the nonlinear and recursive nature and the presence of
inverse matrix, the exact and theoretical analysis of the RLS al-
gorithm is rather complicated and difficult [27], where the com-
putation of the expectation E{®] " (k)} is crucial to the statis-
tical analysis of the proposed RLS algorithm. Firstly we con-
sider the expectation of the matrix ¥ (k) in (15). By taking ex-
pectation on both side of (15) and after some manipulations, we
can get

k
E{W(k)} = Y E{®:()®] (i)} + T,

i=1

=kU, + 0, fory=1 (32)
and
k P—
E{U(k)} = > 7' + 47,
=1
-1 U+, for0< vy <1 (33)
where

v, 2B {o (ko ()}
=V, + A (rMM (RS + DRSD‘l)
+r11 (DR.D™ + R,)) AT + al, (34)
Tim = E{yi(k)yp, (k)} = b] () R.b;,,(0) + 0785, (35)

P

R. 2 ZDHRSD—U—D (36)

)
I

p
R, 2y D W-YR:pM (37)

)
I

with ¥, 2 &,®!, and o« £ 2po?(r11 + rarar).

Since the received signals {y,,(k)} are temporally complex
white Gaussian random processes under the model assumptions
and ¥, (k) in (15) is the exponentially weighted time-average
of the product v*~1®, (i)®% (i) for 1 < i < k, we can see that
U (k) in (14) tends to be “slowly” time-varying w.r.t. @, (i)
and hence it is “almost” independent of ®4(¢) (i.e., ¥1(k)) for
a non-vanishingly small forgetting factor . Then following the
fact W, (k)W (k) = 1 » and by applying the averaging prin-
ciple (e.g., [26], [36], and [37]), we can obtain

I, =E{U(k)¥; " (k)}

~ E{W, (k) }E{UT (k)}. (38)

Therefore by combining (32), (33) with (38), we can approxi-
mate the expectation of the inverse matrix ¥ (k) as

E{W; (k)} ~ (B{¥1(k))~"

_ e (@),
- (11__1: ‘iIl + ’Yk‘l,o) )
é‘I’,inv(k)

fory=1

for0 <K y<1
(39
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for a non-vanishingly small forgetting factor ~.

Remark 8: The averaging principle (e.g., [36] and [37]) was
applied to facilitate the performance analysis in adaptive fil-
tering literature (e.g., [31] and [38]). Although the approxima-
tion of expectation of the inverse matrix by the inverse of ex-
pectation of matrix shown in (39) may not be valid for many
practical input signals in the ordinary temporal filtering algo-
rithms, it holds in array processing in Gaussian environment for
a non-vanishingly small forgetting factor ~y. (see the justification
of this approximation through simulations in Section VII). [

B. Mean Behavior

By defining the weight-error P(k) between the true weight
P and the adjusted weight P(k) of the adaptive algorithm
as P(k) £ P — P(k) and after some manipulations, from
(18)—(20) and (9), we get

P(k) = (I, — U7 (k)& (k)®7 (k) P(k — 1)

+ 8, (k)@ (k)G (R)Q.

Under the assumptions that ®7 ' (k) and P(k — 1) are indepen-
dent of ®;(k), by taking the expectation on both sides of (40)
and using the results of expectation evaluation [18], we can get
the recursion of the weight-error matrix in the mean sense

(40)

E{P(k)}
(Ip
k

£ Wlm >< 1 @
=1 1=m-+1

Obviously the convergence of the weight-error matrix P(lc)
in the mean sense is governed by the time-varying component
Frcan (k) 27 p— U, (k)¥;, which is more complicated than
that of the LMS/NLMS algorithm [18].

Ui (k)8 E{P(k — 1)} + aW;n, (k)P

mv(m)‘Ill)) E{P(0)} + a{‘I’inv(k)

- \Ifmv@)\Ifl)) } P.(41)

C. Mean-Square Behavior

In view of the assumptions that the true weight P and the es-
timated one P(k— 1) are independent of @, () and the analyses
in Section V-A, we can find that the weight-error P(k — 1)
and the inverse matrix ¥7 ' (k) are independent of ®, (k) for a
non-vanishingly small ~. By letting K (k) £ E{i’(k)PH(k)}
and following [18], from (40) and after some calculations, we
can obtain

K(k) = (I, — i (k)¥1) K(k — 1)(I, — U ¥ (k)

—|—2Re{a‘1linv(k)PE{P (k — 1)} — Wi (k)
(aPE{P" (k- 1)}, + K5 + K6)\Ilﬁv(k)}

+ Ui (k) (e?PP" + K1 + K> + K33

+K )W (k)

mv

(42)
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where W;,,, (k) denotes the expectation of matrix ¥} ' (k) given

by (39), while

P P 4

K2y Y > Z Firi K" (k= 1)F ., (43)
l:pl t;l zjl

K, = ZZZZFu it {FILK(k—1)}  (44)
l;l t;l Lzl

Ks£Y > Z Titm@Q QT i (45)
=1 t=1 i=1 k=1
P P 4

K2 3% Z Fimitr{T ., QQ™} (46)
=1 t=1 i=1 k 1
p p 4

K5 é Z Z Z ZF”’mtE{P*( - 1)}QTrmf il (47)
l;l t;l Lzl . ] B

ED ZFﬂ,mttr{r‘mu,QE{P (k—1)}}
=1 t=1 i=1 k=1

(48)

with F” mt = E{zbl(k (K )} le mt = E{Zbl( )z ﬁt(k)},

\E7
le mt — E{zzl( )gmt(k)} le mt — E{gzl( )gmt( )}
I‘mf7l = E{Zne(k )911 (k)} fori, m =1, 2 3, 4andl, t

L,2,. ,PAZU(’C) = yfz(k)yM(k) Zzz(k;) = yfl+1(k) k),
231(]“) :A ybl(k)yl(k)9 541(]“) A: Z'lbz+1( )y I(k)’
gu(k) = wu(k)yi (k). go(k) = wpia (R)yi (),
gu(k) = wn(k)y(k), guk) = wup(k)ya(k),

wp(k) £ [wi(k), wipr(k), ..., wirr—2(k)]", and @y (k) £
[war—i141(k), war—i(k), ..., wpyo—1(k)]*. Furthermore the
analytical express1ons of the five matrices F;; mts Pl kts
it e, me it, and I';; ., can be obtained in Tables II-VI of
[18], and they are omitted herein for conciseness.

Clearly this recursion and that in (41) describe the transient
behavior of the proposed RLS algorithm in the mean and mean-
square senses, respectively.

D. Learning Curves and Steady-State Performance

Since the derivations of the MSE and MSD learning curves of
the proposed RLS algorithm are almost same to that of the LMS
algorithm [18] and the results can be directly applied, hence
from (9), (20) and (42), the MSE and MSD learning curves
JYSE(K) and JYSP (k) of the RLS algorithm are obtained

Jits (k) £ tr{ E{E" (k)E(k)}}
=tr{¥, K(k— 1)} +ate{P" P+ I, 5}
— 2aRe{tr{PHE{P(k -1}

2 gl (P (k)P(E)}} = tr{K ()}

Furthermore from (41), the mean of the weight-error P(k) in
the steady-state is given by

(49)

Jrre (k) (50)

lim E{P(k)} = a\ill_lP. (51

k—o0
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And the steady-state MSE (SSMSE) and steady-state MSD
(SSMSD) of the RLS algorithm are obtained as

& i A
= tr{¥; K(00)} — 2a?Re{tr{P7 ¥, ' P}}
+atr{P"P + 1y 5} (52)
Tres " = lim JRES' (k) = tr{K(c0)} (53)
where K (00) é limg oo K (k), which is the mean-square

weight-error given by (42) in the steady-state.

Remark 9: Due to the fact that the expectation of the inverse
matrix is derived for a nonvanishingly small forgetting factor,
the statistical analyses of the RLS algorithm mentioned above
are valid for large forgetting factor. O

VI. ANALYTICAL STUDY OF RLS PERFORMANCE

Here we consider the statistical properties of the RLS algo-
rithm in the case of one single signal with constant direction and
the quantitative performance comparison of the RLS and LMS
algorithms in the steady-state to gain some insights into the im-
pacts of the forgetting factor, the initialization and the SNR on
the performance of the proposed algorithm.

In this case (i.e., p = 1 and L = M), we readily get [18]

P:p:
‘i’l :\I’l :47‘3-{-4(7'5-1-0'2)2

[6—1'44107'(191)7 . e—ij(J\rI—Z)‘r(&l)]

(54)
(55)

where ry = 74, . By performing some manipulations, the mean
and mean-squared weight-errors in (41) and (42) are given by

E{P(k)} = E{p(k)}
= (1= Ui (k)0 )E{p(k — 1)} + Wy (k)p
K(k) = K(k)
= (1= Wiy (k) 012K (k — 1) + 2Re{ Wy, (k)p
- E{p" (k= 1)} = Wi, (k) (apE{p" (k - 1)}
U+ Ky 4+ Ke)} 4+ U2 (k) (o’pp™ + Ky
+ Ko+ K3+ Ky)
= ((1 = Wiy (k) T1)? + Uiy (k) (K1 + K2)) K (k — 1)
+ 2Re{aW;, (k)pE{p™ (k — 1)}
— UE (k) (apE{p" (k — 1)} U + K5 + Kq)}

(56)

+ U2 (k) (e’pp™ + K3 + Ky) (57)
where a = 40%(rs + 02), and
K, =8r2(4r2 + (2r, + 0K (k — 1)
2K, K(k—1) (58)
Ky = (4077 +6(r2 + (rs + 0°)%)%) K(k — 1)
£ KoK(k—1) (59)
K3 =20%(r2 + 20%(rs + 0%)) (60)
Ky =2(M—2)0?(r2 4 (rs+02)*) (4(rs+0?)+0?)
+ 40%r2(0? — 2r,) (61)
Ks =csipE{p (k- 1)}
— 5070 CTMITE) (B LpT (k= 1)}) a2
— 530G MTOD) (BIB*(k — 1) )a—s (62)
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K¢ =cepE{p™ (k — 1)}
— cs3e 1T (E{p* (k — 1)}

— 53?0 CTMTOD (BIG*(k — 1) ar—e (63)
c51 = 2027"3(27"5 + 02) (64)
Cs0 = 6027;(7"5 + 02)(27“S + 02) (65)

3 (66)
Ce1 :60' (7"5 + 02)(7"3 + (7'5 + 0'2)2) (67)

Cr3 = 40

while (-); denotes the ith element of the bracket vector, and the

approximated expectation of the inverse matrix \111_1 (k) is given
by

(kW +0,)" L, fory=1
Uiny (k)= k= -1 68
(k) (11_1: 1 k‘1/o> for 0y <1. (68)
where this expectation in the steady-state is given by
. 0, fory=1
kh—>nolo Wine(k) = { (1 -0, foro<y <1, (69)

Then from (56) and (57), we can see that the convergences
in the mean and mean-square senses are controlled by the time-
varying factors fmean(k) 21— Ui (k) and fro (k) 2
(1 — Wi (B)W1)2 + W2 (k)(K1 + Ka), respectively. Under
the assumptions that 0 < v < 1 and ¥y > 0, from (68), we
easily get 0 < fmean(k) < 1, which means that the convergence
is always guaranteed in the mean sense. On the other hand, the
convergence factor fy, s (k) is affected by v and Uy in a rather
complicated manner through the time-varying W;, (k) during
the transient phase. By analyzing f,, . (k) with (68) and (69),
we can find that following observations on the performance of
the proposed RLS algorithm (some slightly tedious analyses are
omitted herein):
1) The small initialization ¥ should to be chosen to gain fast
convergence;

2) When the forgetting factor «y increases, the rate of conver-
gence will decreases;

3) The rate of convergence decreases with the increasing
SNR.

Furthermore, by comparing the updating equation of the RLS
algorithm in (19) and that of the LMS algorithm in [21, Eq.
(25)], we see that the inverse matrix ‘Ifl_l (k) (i.e., ¥1(k))in (19)
has the effect similar to the step-size p of the LMS algorithm.
Now we discuss the relative performance of the RLS algorithm
and the previously proposed LMS algorithm [18] in the steady
state.

When the instant index £ is sufficiently large so that
E{p(k)} = E{p(k — 1)} and K(k) = K(k — 1), from (56)
and (57), we can obtain by virtue of (54), (62), and (63)

E{p(k)} =a¥;'p (70)
Nris(k)
K(k) =—=—"2=2-+2< 71
(k) Dris(k) b
for sufficiently large iteration index k, where

Nrrs(k) =2(M — 2)a?0~ + U, (k) (K3 + Ky
— (M —2)a® — 2(Ks + Kg)) (72)
Dris(k) =201 — Uiy (k) (92 + Ky + K>) (73)
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K5 = OJ\III_I((M — 2)651 — C52 — 053) (74)
Ko =¥ (M —2)ce1 — 2¢53). (75)

Then by substituting (69) into (71), from (53), the SSMSD of

the proposed RLS algorithm is obtained for different forgetting

factor ~y as
JgilgISD —

SSMSD
JRLS

= (M —2)a*¥;? (76)

|0<<’Y<1

= (203 — (1= 7)(} + Ky + K2)) 7 {2(M — 2)a?
+ (1 —7)(Ks + K4 — (M — 2)0® — 2207
(M = 2)(cs1 + cor) — (e32 + 3ess))) |

Similarly we can get the analytical expression of the SSMSD

JESMSD of the LMS algorithm proposed in [18] as

(77)

JESNSD — (202 — 0y (U2 + Ky + Ko)) " H{2(M — 2)a?
+ Uy (K3 + Ky — (M = 2)a” = 2007
“((M —2)(es1 + ce1) — (52 + 3¢353))) }

where 1 is the positive step-size, and its stability region is given
by 0 < p < Typ. [18].

Hence by comparing (76)—(78), we can easily obtain the fol-
lowing results on the steady-state performance of the proposed
RLS algorithm and the LMS algorithm in [18] for the case of
one incident signal

(78)

SSMSD SSMSD
JRIs |7:1 < Jris |0<<7<1 (79
SSMSD SSMSD
JRLs |y2 < Jris™|, (80)
for 0 € 71 < 72 < 1, while
SSMSD SSMSD
Jris” |21 < Jinis (81)
and
SSMSD SSMSD
JRIS = Jins (82)

forp = (1-9)070 <y < 1,and 0 < g < Typ.. Obvi-
ously the RLS algorithm with v = 1 has superior performance
in the steady-state than the RLS algorithm with 0 < v < 1 and
the LMS algorithm with any step-size, and the RLS and LMS
algorithms have the similar steady-state performance when the
RLS forgetting factor and the LMS step-size are chosen appro-
priately.

VII. NUMERICAL EXAMPLES

Now we verify the effectiveness of the proposed AMEND al-
gorithm and the statistical analyses of the proposed RLS-based
subspace updating algorithm through some numerical exam-
ples. The ULA is separated by a half-wavelength, and the SNR
is defined as the ratio of the power of the incident signal to that of
the additive noise at each sensor. The simulation results are ob-
tained by the ensemble-averaging over 1000 independent trials.

1) Example 1: Verification of Statistical Analyses: In this ex-
ample, we inspect the theoretical analyses of the statistical per-
formance of the proposed RLS-based algorithm for subspace
updating studied in Sections V and VI. Here we define the rel-
ative measure factor (k) of closeness between the ensemble-
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averaged value of E{®¥7"'(k)} and the approximated expecta-
tion ¥;,,, (k) in (39) as

2

£ (83)

15 ()1 7

where (W] *(k))® denotes the inverse of Wy (k) obtained in the
7th trial at the instant &k, N is the number of trials, and the en-
semble-averaging of { (W] " (k))(} is used as the experimental
value for the expectation E{®7"(k)}. Obviously the smaller
value of (k) indicates the better approximation.

Firstly we examine the theoretical derivations of expectation
computation of the inverse matrix and the MSD learning curve
of the null space updating for several forgetting factors, where
one signal impinges on the array along #; = 5° with the signal
power s, = 1 and SNR = 10 dB (.e,, 0?2 = 0.1), and the
initial value U, is set to one, while the RLS forgetting factor is
settoy =1, 0.975, 0.9, 0.8, and 0.6. When v = 1, the RLS al-
gorithm has growing memory with infinite window length L.,
and Wy (k) in (15) is a function of all data ®, (i)® (i) for i =
1, 2,...,k with same weight v = 1, hence the assumption of
independence between W * (k) and W, (k) (i.e., ®1(i)®7 (i) for
i =1, 2,..., k) mentioned in Section V is valid. When vy < 1,
the algorithm has exponentially growing window with a small
window length L.g, and it gives less weight v*~¢(< 1) to the
past data @, (i)®}' (i) fori < k and more weight 7°(= 1) to the
current one @, (k)®;" (k). Thus the independence assumption
between ¥ ' (k) and ¥, (k) becomes weak and correspond-
ingly it results in the degeneration of the approximation in (39)
for small . As shown in Fig. 2, we can see that there is a good
matching between E{® ;" (k)} and ¥, (k) in (39) (i.e., (68))
for a non-vanishingly small « and especially for large ~ that
is close to one, as the instant k increases. As a result, the en-
semble-averaged MSD learning curves of the RLS algorithm
agree well with the theoretical ones given by (42) (i.e., (57)) for
large v as shown in Fig. 3, when the instant k£ becomes large.
Moreover, as clarified in (79) and (80), the steady-state MSD
JEINISD decreases with the increasing forgetting factor «y, and
the minimum one is achieved at v = 1, while the convergence
speed becomes much lower for larger .

Next we test the convergence behavior of the proposed RLS
algorithm in terms of the initialization ¥, where the SNR and
the forgetting factor are set to 10 dB and v = 1, and ¥ is chosen
as Uy = 1000, 100, 10, 1, and 0.1, while the other simulation
parameters are same to that above. From Fig. 4, we easily find
that there is a perfect agreement between the theoretical MSD
learning curves (42) [i.e., (57)] with the simulation results for
the forgetting factor v = 1, and smaller initial value ¥, is de-
sirable for fast convergence speed. Note the rate of convergence
is relatively insensitive to the variation of SNR when ¥ is rel-
atively small.

Then we consider the influence of the SNR on the conver-
gence of the RLS algorithm, where the simulation parameters
are similar to the above, except that v = 1, Uy = 1, and the
SNR is varied from 0 dB to 20B. Fig. 5 shows that the theoret-
ical results agree well with the simulation ones, and the rate of
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2 Relative Closeness Factor of Approximated Expectation Computation
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Fig. 2. Relative measure of closeness between E{¥; ' (k)} and ¥;,,, (k) for
several forgetting factors in Example 1 (M = 16,p = 1, SNR = 10 dB,
¥y = 1,andy = 1, 0.975, 0.9, 0.8, and 0.6).

MSD Learning Curves of Null Space Estimation (RLS)

JMSD (k)
5]

0 50 100 150 200 250 300 350 400 450 500
Instant Index k

Fig. 3. MSD learning curves of null space estimation for several forgetting fac-
tors in Example 1 (solid line: ensemble-averaged MSD; dash-dot line: theoret-
ical MSD; and dotted line: steady-state MSD; M = 16,p = 1,SNR = 10dB,
¥y =1,andy = 1,0.975, 0.9, 0.8, and 0.6).

convergence in the mean-square sense becomes relatively fast
at low SNR as described in Section VL.

Finally we compare the relative performance of the RLS al-
gorithm and the LMS algorithm [18] for the null space estima-
tion, where §; = 5° with r,, = 1, the SNR is set to 10 dB
(i.e., U; = 8.84), and ¥, = 1. When the forgetting factor of
the RLS algorithm is chosen as v = 1, while the step-size of
the LMS algorithm is chosen as p = 0.005, 0.01, and 0.02,
which satisfy the stability condition 0 < p < Z.p,., where
Tyup. = 8.2336 X 1072[18]. The theoretical and ensemble-aver-
aged MSD learning curves of the LMS algorithm are plotted and
compared with that of the RLS algorithm in Fig. 6. Obviously
the RLS algorithm with v = 1 provides smaller steady-state
MSD for the null space estimation than the LMS algorithm with
any step-size p as derived in (81). On the other hand, when the
step-size of the LMS algorithm is chosen as p = (1 — v)/¥ =
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P MSD Learning Curves of Null Space Estimation (RLS)
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Fig. 4. MSD learning curves of null space estimation for several initial values
of ¥ in Example 1 (solid line: ensemble-averaged MSD; dash-dot line: theoret-
ical MSD; and dotted line: steady-state MSD; M = 16,p = 1,SNR = 10dB,
v =1, and ¥, = 1000, 100, 10, 1 and 0.1).

MSD Learning Curves of Null Space Estimation (RLS)
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Fig. 5. MSD learning curves of null space estimation for several SNRs in Ex-
ample 1 (solid line: ensemble-averaged MSD; dash-dot line: theoretical MSD;
and dotted line: steady-state MSD; M = 16,p = 1,v = 1, ¥y = 1, and
SNR = 0 dB, 5dB, 10 dB, 15 dB, and 20 dB).

2.8281 x 1072, where the forgetting factor of the RLS algo-
rithm is set to v = 0.975, the theoretical and ensemble-aver-
aged MSD learning curves of the LMS and RLS algorithms are
depicted in Fig. 7. We can see that the LMS algorithm has the
similar behavior in the steady-state as that of the RLS algorithm
with v < 1 by choosing the step-size y properly as shown in
(82), however it performs worse than the RLS algorithm during
the transient phase.

2) Example 2: Tracking Performance of Proposed Amend Al-
gorithm: Now we evaluate the performance of the proposed
AMEND algorithm shown in Section IV-B for tracking the di-
rections of coherent signals with crossings. The number of sen-
sors is M = 12, and there are four coherent signals come from
nonlinearly or linearly time-varying directions 61 (n) ~ 64(n)
with the SNR’s of 10 dB, where the initial values are —60°,
—20°, 8.28°, and 60°, respectively. The directions are tracked
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Fig. 6. MSD learning curves of the RLS and LMS algorithms in Example
1 (solid line: ensemble-averaged MSD; dash-dot line: theoretical MSD; and
dotted line: steady-state MSD; M = 16,p = 1,SNR = 10dB, vy = 1,
¥y = 1,and ¢ = 0.005, 0.01, and 0.02).

MSD Learning Curves of Null Space Estimation
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Fig. 7. MSD learning curves of the RLS and LMS algorithms in Example
1 (solid line: ensemble-averaged MSD; dash-dot line: theoretical MSD; and
dotted line: steady-state MSD; SNR = 10 dB, v = 0.975, ¥, = 1, and
p=(1—7)/¥ =28281 x 10~2).

over 60 s with 7' = 1 second, and during each interval 71,
N, = 100 snapshots of array data {y(k)} kliljz,]ﬁl are mea-
sured forn = 0, 1...,59, which are used to estimate the weight

A~

P(k) and the orthogonal projector II(k) at k = (n+ 1) N; (i.e.,
II(n)). The AMEND algorithm with the RLS-based subspace
updating shown in Section IV-B (referred as RLS-AMEND) is
carried out, where the forgetting factor and the initialization are
setto v = 0.98 and Uy = 1, and the parameters of poles of
Luenberger observers as described in Remark 5 are chosen as

k1 = 0.79, ¢ = 10° Re = 0.79, ¥ = 12°, k3 = 0.77,
hs = 14° Ry = 0.75, 94 = 15°, ks = 0.76, 95 = 13°,
Re = 0.78, and 1) = 11°, respectively. The NLMS-based sub-
space updating [18] is also performed and introduced into the
AMEND algorithm (referred to as NLMS-AMEND) for com-
parison, where the step-size is set to ;i = 0.8.
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Fig. 8. (a) Tracking results for the directions of coherent signals with crossings.
(b) Root-MSD learning curves of estimated directions in Example 2 (dotted
line: actual values; solid line: RLS-AMEND algorithm; dashed line: NLMS-
AMEND algorithm; M = 12,p = 4, SNR = 10dB, N, = 100,y = 0.98,
Uy = 1,and i = 0.8).

In order to measure the overall performance of estimating the
directions, we define a root-MSD learning curve of estimated
directions (RMSDD) as

N p - 2
JRMSDD () & L Z Z (éi(’)(n) - Hz(n)) (84)

where éfz)(n) is the estimate obtained in the sth trial at the
instant n. In the initial phase, by using the first Ny snapshots
{y(k)} =, the number of incident signals is estimated correctly
as p = 4 by using the batch MENSE [34], while the initial
values of directions are estimated by the batch SUMWE [2].
Then forn = 1, 2,..., the directions are estimated and tracked
by using the proposed RLS-based subspace updating and the
Luenberger observer, where the eigendecomposition for sub-
space updating, the estimation of noise variances required by the
ordinary Kalman filtering and the estimate association of direc-
tions are avoided. The trajectories of the actual directions and
the estimates obtained by the proposed RLS- and NLMS-based
AMEND algorithms are plotted in Fig. 8(a), while the corre-
sponding JRMSDPD () learning curves are shown in Fig. 8(b).
As aforementioned, the inverse matrix \Ill_l(k) in (19) plays a
similar role to the step-size of the LMS/NLMS algorithm, and
it can be seen as a time-varying parameter in terms of v, ¥,
and “input data” ®,(7) for i = 1 to k, while the step-size of
the LMS/NLMS algorithm is constant herein. Clearly, the pro-
posed RLS-AMEND algorithm provides remarkable tracking
ability than the NLMS-based one in the multipath environment
for the time-varying directions with crossings, where the esti-
mated DOAs are always very close to the actual values.

3) Example 3: Tracking Performance of Modified Amend Al-
gorithm: In this example, we assess the tracking performance
of the modified AMEND algorithm with “self-initialization”
described in Section IV-C (referred to as RLS-MAMEND) in
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Fig. 9. (a) Tracking results for the directions of coherent signals with crossing
and appearing/disappearing (dotted line: actual values; solid line: RLS-AMEND
algorithm; dashed line: NLMS-AMEND algorithm). (b) Averaged estimates
of the number of signals (dotted line: actual value; solid line: AMEND
algorithm; dashed line: FBSS-MDL; dash-dotted line: SS-MDL) in Example
2 (M =12,SNR =15 dB, N, =50, vy =0.98, ¥, =1, and @ = 0.9).

a difficult scenario, where four coherent signals with SNR’s
of 15 dB imping on the array from 6:(n) ~ 64(n), where
s1(n) appears at T = 11 second and T = 61 second and
disappears at T = 25 second and 7' = 70 second, s2(n)
disappears during the interval between 7" = 25 second and
T = 60 second, while #3(n) and 64(n) are nonlinearly or
linearly time-varying with crossing as shown in Fig. 9(a),
where the initial values of directions are —12°, 4°, 15° and
40°, respectively. The other simulation parameters are similar
to that of the previous example, except that N, = 50 and
o =0.9, where the NLMS-based subspace updating [18] is
also introduced into the modified AMEND algorithm (referred
to as NLMS-MAMEND) for comparison.

The performance for tracking the directions and that for
estimating the number of incident signals are depicted in
Figs. 9(a) and 9(b), respectively, where the QR decomposition
with a priori column pivoting (QRPP) is used in the MENSE
to improve the detection performance (cf. [34] for details). The
most popular eigenvalue-based minimum description length
(MDL) criterion [41] with the spatial smoothing (SS) and
forward-backward SS (FBSS) preprocessing [42] is carried out,
where the instantaneous array covariance matrix at the instant
n is calculated from the N snapshots {y(k)},(;tlljz,NH and the
subarray size is chosen as m = 6, and the averaged estimates
of the signal number are also plotted in Fig. 9(b) for reference.
When two incident signals (i.e., §3(n) and f4(n)) become close,
the ranks of A(6(n)) will begin to collapse and result in the fact
that only one signal will be detected. As shown in Fig. 9(b), the
proposed MAMEND algorithm has similar detection perfor-
mance to the SS-based MDL method with eigendecomposition,
and it can estimate the decreasing and increasing number of
incident signals accurately and immediately. Hence by moni-
toring this change of the number of incident signal during each
interval, the proposed RLS-MAMEND algorithm can initialize
the RLS-based subspace updating and the Luenberger observer
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automatically, and we easily find that the directions can be
tracked well by using the proposed RLS-MAMEND algorithm.
Note that there are some stray estimates of directions in the
cross region shown in Fig. 9(a) due to the spurious estimate of
the number of incident signals as shown in Fig. 9(b).

VIII. CONCLUSION

In many applications of array processing, the directions of
incident signals may be time-varying with crossings, and some
incident signals may appear and disappear sometimes. In this
paper, a new computationally simple and efficient subspace-
based adaptive method was proposed for estimating DOAs of
multiple coherent narrowband signals impinging on a ULA. Es-
pecially in the proposed AMEND algorithm, the null space is es-
timated by using the RLS algorithm, and the direction tracking
is accomplished by employing the Luenberger observer, where
the eigendecomposition for subspace updating, the estimation
of noise variances required by the ordinary Kalman filtering and
the estimate association of directions are avoided. The statistical
performance of the RLS algorithm in stationary environment
was analyzed in the mean and mean-squares senses, and fur-
ther the MSE and MSD learning curves were derived explicitly.
Moreover an analytical study of the RLS algorithm was carried
out for one incident signal, where the effects of the forgetting
factor, the initialization and the SNR on the convergence were
examined, and the relative performance of the RLS and LMS al-
gorithms in the steady-state was discussed. Finally the effective-
ness of the proposed algorithm and the theoretical derivations
were verified and substantiated through numerical examples.

APPENDIX
COMPUTATION OF OBSERVER GAIN

By letting the desired pole locations of the F' — g,c!’ in the
z-plane be z;1, 2;2, and z;3 and defining g, = [9i1, giz, 9i3) T
fore =1, 2,..., p, from (5), the characteristic equation for the

’ ’

error dynamics in (25) is obtained

|213 - (F - giCT)l
=(2— 1)2(»2 +9i1—1)

+ (2 = 1)(0.5g;3T% + gioT) + 93T =0 (Al)

while the desired observer characteristic equation is given by

(z = zi1)(z — 2i2)(2 — zi3)

=23 + 041',122 + a0z + a3 =0 (A2)
where a1 = — (21 + zio + 2i3), Qo = 2i12i2 + 2i12i3 + Zi2 %3,
and i3 = 2i12i2%:3.

Then by comparing the coefficients of equal powers of z in
(A1) and (A2) and after some simple manipulations, we can
obtain the elements of gain g, as

gi1 =3 + a;1 (A3)
1

gia2 = ﬁ(5 + 31 + i — ai3) (A4)
1

Gi3 = ﬁ(l + i + o + ay3). (A5)
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