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Linear Prediction Approach to Direction Estimation
of Cyclostationary Signals in Multipath Environment

Jingmin Xin, Member, IEEEand Akira SanpMember, IEEE

Abstract—in this paper, we investigate the estimation of the di- snapshots is usually limited. In these scenarios, the performance
rections-of-arrival (DOA) of closely spaced narrowband cyclosta- of most subspace-based methods and their variants will degrade.
tionary signals in the presence of multipath propagation. By x- \igreqver, the subspace-based methods basically rely on the

ploiting the spatial and temporal properties of most communica- . - . . .
tion signals, we propose a new cyclic forward-backward linear pre- spatial information contained in the received data, whereas the

diction (FBLP) approach for coherent signals impinging on a uni- temporal properties of the desired incident signals are ignored.
form linear array (ULA). In the proposed algorithm, the evaluation Most man-made communication signals exhibit cyclosta-

of the cyclic array covariance matrix is avoided, and the difficulty  tionarity for a given cycle frequency because of the underlying
of choosing the optimal time lag parameter is alleviated. As a re- periodicity arising from carrier frequencies or baud rates [13],

sult, the proposed approach has two advantages: 1) The compu- . - . . - .
tational load is relatively reduced, and 2) the robustness of estima- [14]. Many direction estimation methods exploiting this inher-

tion is significantly improved. The performance of the proposed ap- €ntly temporal property have been developed recently (see, e.g.,
proach is confirmed through numerical examples, and it is shown [14]-[21] and references therein) in which the stationary noise

that this approach is superior in resolving the closely spaced co- and the interfering signals that do not share a cycle frequency
herent signals with a small length of array data and at relatively common to the desired signals are suppressed. For estimating
low signal-to-noise ratio (SNR). . . ; - .
the directions of coherent cyclostationary signals, a cyclic ML
Index Terms—Array signal processing, cyclostationarity, method [22] and an SS-based cyclic MUSIC method [23],
directions-of-arrival estimation, linear prediction, singular value [50] were proposed. However, the former is computationally
decomposition, spatial smoothing. . - ! L - L
expensive because it involves a multidimensional optimization,
whereas the latter is still not computationally efficient enough
|. INTRODUCTION since the cyclic correlation matrices of subarrays must be
evaluated.

N ARRAY signal processing, a major problem is the es: Theref thi imstoi tiqat Hicient method
timation of the directions-of-arrival (DOA) of the signals eretore, this paper aims o investigate an €efncient metho

impinging on an array of sensors. For estimating the directioﬁ't’g tgst|mat|r_19 ”}e .DOA o;‘t_clotshely spacetq narroyvband cty (fll_cr:
of multiple narrowband signals from the noisy array data, ma?-a lonary signais in a muttipath propagation environment. 1 he

imum likelihood (ML) methods and subspace-based methoﬂi}ear prediction (LP) methods are attractive for resolving the

are well known. While subspace-based methods such as MU ely spaced sigr_lals with ST“a” Ie_ngth .Of data and at |9W
[1], ESPRIT [2], minimum-norm [3], and MODE [in a uniform NR because of their computational simplicity [24]-[26]. In this

linear array (ULA) case] [6], [41] are more computationall;Paper’ we propose a new cyclic forward-backward LP (FBLP)

efficientthan the ML methods [4]-[7], all of them except MODEappr(_)‘T’l(?h to Iocalizir_lg the coherent signals impinging ona U!‘A'
are unsuitable for coherent signals. To tackle the problem %¥ utilizing the ;patlal and tempqral propertles OT the incoming
coherent signals, several modifications to the subspace—ba%'&ﬁ]als’ a modified FBLP e_qgatlon |s_fqrmed with a subarray
methods have been proposed [8]-[12]; among them spaﬁﬁ eme, and then, the prediction coefficients determined from a

smoothing (SS) [8] is a popular preprocessing scheme. MO lic LF.> equation can be. used to gsumate _the.DOA of the co-
is also known to be statistically efficient in cases when eith FrentS|gnaIs.Asthe cyclic correlation function is dependent on

the number of snapshots or the signal-to-noise ratio (SNR)t timg lag parameter, the choice of the optimal lagis C“.JCia' for
sufficiently large [6], [48], [49]. However, in array processingi‘: C_yC“C methods [15], [1.7]' [18], [.20]' butitis rarely available.
of wireless communication systems, there are some practi }h|s_ Paper, we use T‘“_"“p'_e lags m_aforw_a_rd-backward_vx_/ay 0
situations where the overall number of incident signals is grea loit the cyclic statistical information efficiently. In addition,

than the number of sensors, even though the number of desi %chmce_ of the ?ub?trray ﬁ.ze ("tﬁ" tbhe tordefr of the LP ?[())gil
signals is smaller, and multipath propagation due to variofl § one) is important to achieve the best performance o

reflections is often encountered. Furthermore, the number imation. For sufficiently high SNR, an analytical expression

of error variance of spectral peak position is derived using linear
Manuscript received January 17, 2000; revised September 6, 2000. This wagproximation. Then, the optimal subarray size minimizing the
was presented in part at the IFAC 14th World Congress, Beijing, China, Juyya gk position variance is clarified. Unlike the SS-based cyclic
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SS-based cyclic MUSIC method. The performance of the prib-can be estimated from the finite data by using the methods
posed approach is verified through numerical examples. proposed in [18] and [29].

II. PROBLEM FORMULATION B. Linear Prediction with Subarrays

A. Data Model Here, we consider the case that the interfering signals are ab-
sent. The noiseless received signgis(n)} in (2) differ only

by a phase factas, 7 (6); therefore, from Prony’s method [30],

we can find that the noiseless sign@is(n)} obey a linear dif-
ference equation [9], [24]. By dividing the array infoover-

We consider a ULA ofM identical and omnidirectional
sensors with spacing and assume that narrowband signals
{sx(n)} with zero-mean and center frequenfyare far enough

ayvayland comhe Ifrr(]Jm distinct dki)rectior{ﬁk}.dTQe received lapping subarrays of size:, whereL — M — m + 1 and
signaly;(n) at theith sensor can be expressed by m > q+ 1, i.e., thelth forward subarray comprises sensors
yi(n) =x;(n) +w;(n) @ {141, -, I+m—1}, the signak;;,,—1(n) can be exactly
I i) (8) predicted byz;(n), zip1(n), - -+, Ziem—2(n) as [24], [30]
zi(n) = sp(n) edwolt =T (2)

() = 2, auln) Sttms(n) = % (n)a ©
wherex;(n) is the noiseless received signal(n) is the addi- wherez; (n) = [zi(n), zi41(n), - -, Tigm—2(n)]F, a =
tive noisewo = 27 f., 7(0) = (d/c) sin by, cis the speed of [an, 1, Gm_2, -+, a1]¥, and{a;} are the LP coefficients. Sim-
propagation, and, is the measured relatively to the normal oflarly, by partitioning the full array intd. subarrays withn sen-
the array. sors in the backward direction, we obtain the LP equation for the

From (1) and (2), the received array data can be rewrittenlith backward subarray as [9]
a more compact form as .
g )= Asto) " 2i-rpa(n) = o (n)a (6)
yn) = As(n) +w(n N N N
- wherez, (n) = [a3/_31(n), @3 _i(n), -+, @7 n(n)],
wherey(n) = [y1(n), y2(n), -, ym(n)]", s(n) = [s1(n), and the asterisk denotes the complex conjugate.
s2(n), -+, sp(n)], w(n) = [wi(n), wa(n), -, wy(n) From (1), (5), and (6), we then get the following forward LP
I, A = [a(61), a(62), ---,a(6,)], a(6r) = [1, ™™ (| p) and backward LP (BLP) models for the noisy received
, /o M=Dm(@T gnd(-)T denotes transpose. data
We will consider the direction estimation under the following T
assumptions on the data model. Yipm—1(n) =y5 (n)a+efi(n) @)
Al) The array steering matri¥d is unambiguous, i.e., Yi—i1(n) =43 (n) a+ ey, 1(n) 8)
;hrz Iizteeaerrllngind\éecetr?;lseé?(?éz7 35192)73;3;[.’0?(%)i)s];incWhereyf’l(n) - ) v (), - yz+m_2(n)]:‘;,
0, 6 y9 P y bb,l(n) = [97\4714-1(”)7 y}kwfl(n)v T 92714_2(”)] )
{01, 27 b} _ ) esi(n) and g, ;(n) are the forward and backward predic-
A2) There |sfrequency-flatmulnpath propagation [8]'[28]tion errors given byes () = wism 1(n) — w?l(n) a,
Without loss of generality, the firgt (1 < ¢ < p and o T _ '
: epi(n) = wh—l+1(”) w;, () a, wy(n) = [wi(n), wip
q < 2M /3 [see Remark C)] signals are coherent one(%) o w IF, w (’n) — (n), whr_,(n)
from the desired source that are expressed by 1 me2L ol b M=t LA M=
dots, wi_,, o(n)]".
sp(n) = Brsi(n) 4 Inthe LP-based DOA estimation methods, the estimation ofthe

wheres, is the multipath coefficient that represents thép coefficients is very important [31]. The accumulation of the

complex attenuation of thizth signal with respect to 24ditiVe NOISES iyym_1(n), y7 141 (1), Yy, ((n), andy, (n)
the first ones: (n) with B # 0 andf, = 1 will cause the ordinary least squares (LS) or minimum-norm esti-

A3) The desired source exhibits the second-order cyclos[ﬁ?te frgm (7) a'nd (8)tobecome bia§ed "?md incoqsistent [32], and
tionarity with the cycle frequenay, and it s cyclically this estimate will make the DOA estimation unreliable. The total
uncorrelated with the other signals for this cycle frel—eaSt squares (TLS) LP [33] ano_l the smoothed LI.D [11] methods
quency. can b_e applied to reduce the noise eff(_ect, bu_t the|_r performances

A4) The noises{w;(n)} are cyclically uncorrelated with deteriorate when the total number of incoming S|gnaI§ excgeds
themselves and with the incident signals at the consiH]—e number of SEnsors, even f[hough Fhe ngmberof desired s.|gnals
ered cycle frequency. IS ;maller. In this paper, we will _epr0|t the inherent cyc_lostatlo_n—

A5) The number of coherent signajsand the cycle fre- a_rlty of most co_mmumcaﬂon signals to suppress the interfering
quencya are known, signals and noise.

Remark A: When the number of coherent signals is un-
known, it can be estimated by using the methods presented in
[14, ch. 3] and [16]. We have also proposed a detection methad Cyclic Correlation of Noisy Data
by minimizing the mean-squared-error (MSE) of the estimatedgist, the noiseless signaj(n) in (2) can be rewritten com-
LP parameters in [21] and [46], and it is well suited to bEactIy as
used in conjunction with the approach for the coherent signals
described in this paper. If the cycle frequeneys unknown, z;(n) = b} (B)s(n) = s7 (n)b;(h) 9

Ill. CycLic DOA ESTIMATION OF COHERENT SIGNALS
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whereb;(0) = [e/«0(i—D78) pijwoli=D)m(0) . jeoi=1)7(8)  mation ofthe desired coherentcyclostationary signals by utilizing
]¥. Then, from the definition of the cyclic correlation functionthe LP technique.

[13], [14] and under the assumptions regarding the source sigBYy letting! = 1 to L and combining (13) and (14), we can
nals and additive noises, we obtain the cyclic correlation funabtain an FBLP equation for the cyclic correlations as

tionry. . (7) between the noisy signalg(n) andy(n) as A7) = ®(r)a (15)
et /. * —j2man
ot (7 = )i+ e wherez(r) = [of(r), [ (r)]", &(r) = [#](r), 2f (r)]",
=b; (0)RS(7)by.(0) (10)  zf(7) = [rg. 4w () gmﬂ,m (), 1S SPT)] , z(7)
Where(z(n)> = lim N—>oo(1/N) 22:01 Z(TL) denotesthetime = [ry, Y1, YM —mt1 ), 7y1, Y- (7—)271 ’ ar’](;z&),yl (7—)]_’ ‘I)f(T) =
average of(n), 7 is the lag parameter, af*(7) is the cyclic [51(7)p,2(7), - lfsof:TL( % bat thb(T) _k [(gb:f.l(.T)’
covariance matrix of the source signals given by ©1,5(7), - @y, ()] To combat the rank deficiency
resulting from signal coherency, we have the following propo-

R¥(1) = (s(n)s™ (n + 7)e7727m) (11) sition.
Proposition' If the array is partitioned properly to ensure
g, the rank of the cyclic matrix®(7) in (15) equals the
mber of the desired coherent signals.
Proof: See Appendix A. [ ]
e can find thatthe dimension of sighal subspace is restored to
g as long as the total number of subarrays is at lgasterefore,
. . i . .~ _itis possible to estimate the directions of the desired coherent
d(-isweq source, the _cychc covariance matrix of source signg E]nals from (15) without any influence from additive noise or
BZ(r) in (11) is obtained as interfering signals. However, ti, x (m — 1) matrix®(7) in
R2(1) =(B s1(n)B" 5% (n + 7)e I2mm) (15) is usually rank-deficient due tp< 2L andg < m — 1.
= r2(7) gB" (12) Hence, the ordinary LS estimate of the paramefeosm (15) will
? be numerically unstable [38]; this ill-conditioning can adversely
whereg is the vector of multipath coefficients given iy = affect the performance of direction estimation [31]. Hence, we

where(-) denotes the Hermitian transpose. Clearly, the affeg;
tions of the arbitrary (not necessarily stationary and/or spatia
white) noise and interference vanish if the cycle frequenty
appropriately selected; therefore, the signal detection capablllth
can be improved.

However, because of the coherency of gregnals from the

Bi, -, Bas Ba1, -+, Bp)t with 841 = -+~ = 8, =0, B use the truncated singular value decomposition (SVD) to obtain
is defined in (4) fork = 1,2, ---, q, andr¢(7) is the cyclic anumerically reliable estimation, where thprincipal singular
autocorrelation function of the signal(n) given byr¢(7) = values and the corresponding singular vectors of the méifi

(s1(n) st(n + 7)e~727*™). We can easily find that the cyclic are used [9], [24], [31], [35], [36].
matrix B¢ (7) is singular, i.e., rank®(7)) = 1, and it brings By performing the SVD on the matri&(7) in (15), we obtain
degradation to the ordinary cyclic methods. B(r) = UAVH (16)

B. Linear Prediction Approach to DOA Estimation where U and V' are the unitary matrices given b§/
Inthe absence of interfering signals, from (10), (1) and (7), w1, 2, -~ -, war] andV' = [y, vy, -+, v, 1], Als the di-
obtain the cyclic correlationy _  (r) between the noisy 2gonal matrix given b = dlag@\b Az, * o Amin (2L, m—1))

signal 4y _1(n) in the ith forward subarray and the signaWith Ay > -+ > Ag > Agp1 = -+ = Ain ez, m—1) = 0, {Ai}
yn(n) as are the smgular vaIues ard, } and{vz} are the corresponding

N . o right and left singular vectors. Then, the minimum-norm esti-
T,y (7)) = Wirm—1 (R)yas(n + 7)e™ ) mate of the LP parameteris obtained [24], [35]

= (g}, ((Myh(n+ 7)™ a = ulfz2(r)
=@ (n)a (13) Q=) % v (17)

=1
wherep, (1) = [y . (7)) 750w (T)s = T o une Finally, by finding the phase of the zeros of the polynomial
(m)]*. Equivalently, we can obtain the cyclic correlationD(z) =1 — 412! — Gez™2 — - - — d_12~ (™1 closest to
To . yr_i4. (7) bEtween the noisy signak () and the signal the unit circle in thez-plane, or by searching for thehighest
yr—1+1(n)inthelthbackward subarray as peaks of the spectruty | D(e7«0(4/¢) sin 6|2 ‘the directions of
o . i%man the desired coherent signals can be estimated [3], [24], [30].
7)111,ny1+1(7_) :<yl(n)yL71+l(n+T)e 7 > g 131, {24], [30]

_ (yl(n)yZl(n +r)eiZmonyg C. Cyclic Localization Algorithm

_ (pT (T)a (14) As the cyclic correlation function is dependent on the lag pa-
b rameterr [13], [14], if the cyclic correlation of one source is
wherep, ((7) =15 ot (T) T yae (T)s =5 T yu iy Z€TO O insignificant for a givem, then this signal will not be

(n]*. As shown in (10)—(12), evenin the presence of interferimgsolved. The choice of the optimal lag parameter is importantin
signals, the affections ofthe interfering signals and noise are elioyclic methods [15], [17], [18], [20], but it is rarely available. To
inated by exploiting the cyclostationarity. We canfind thatthe preembat this problem, some methods were suggested [15], [17],
dictionrelations (13) and (14) inthe cyclicdomain are valid whef27]. In the SS-based cyclic MUSIC method [23], [50], the spa-
theinterferingsignalsare present. Now, we considerthe DOA esiilly smoothed cyclic correlation matrices corresponding to the
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lagst = —Q, ---, —1,0, 1, ---, @ were averaged and thentotal number of time lags. Obviously, in this paper, the computa-

used to estimate the directions of coherent signals, wildee tionalloadindecorrelation stepisreduce@yl + (m—1)(2—

a positive integer. However, this method is not computationaty /A )) or2/M times, respectively, because the evaluation of the

efficient enough because the cyclic correlation matrices of sutyclic array covariance matrix can be avoided.

arrays must be evaluated. The implementation of the proposed approach requires two
In order to alleviate the difficulty in choosing the optimal lagnajor steps: i) computation of the cyclic correlations to farm

and to exploit the cyclic statistics effectively, we use multipland® and ii) estimation of LP parameteiby SVD. Calculating

lags to obtain a robust estimate of the LP parame&t&y con- the cyclic correlations for multiple lags takes approximately

catenating (15) for = -@Q, ---, —1, 0, 1, ---, Q,we canob- 52NN M flops, where a flop is defined as a floating-point ad-
tain a modified cyclic vector-matrix form as dition or multiplication operation as adopted by MATLAB soft-
ware. The number of flops needed by the SVD of madbixs
z=®a (18) ofthe orderO((2LN, )?(m — 1)), whereas the computation of
a requires8(m — 1)(¢? + 2LN,q + 2LN,) + ¢ flops. Thus,
wherez = [27(=Q), ---, 27(=1), 21(0), 27(1), ---, 2T arough estimate of the number of MATLAB flops required by
(Q]F, and® = [@7(-Q),---,2T(-1),®7(0),®7(1),---, the proposed approachi@N, NM whenN > M, where the

®7(Q)]*. Then, on the above derivations, we can estimat®mputations needed by the remaining steps are negligible.
the directions of the desired coherent signals with the cycleRemark C: For estimating the directions of theoherent sig-
frequencya from (18). nals, as stated inthe Proposition, the number of forward and back-
In summary, the proposed FBLP-based algorithm for estirard subarrays must be atleaste.,2L > ¢, and the sizen of
mating the DOA of coherent cyclostationary signals from theach subarray must be greater thawhereL = M — m + 1.

finite array date{y: (n), y2(n), -- -, yu (n)}) 24 is as follows. It follows that2(M — m + 1) > gandm > ¢ + 1, i.e., the
1) Setthe subarray size to satisfym > q+1and2L > ¢, Minimum number of sensors needed in the array must be at least
whereL, = M — m + 1. M > 3q/2 (it follows that the maximum number of the coherent

2) Calculate the estimates of the cyclic correlation functiorfégnals will beg < 2//3 for M sensors). Equivalently, the sub-

e, (r)andrs | (r) from the finite N received sig- array sizen (i.e., the order of the prediction model plus one) must
nals{y(n)} forr=-Q, ---, -1,0,1, ---, Qas be chosen to satisfy the inequality- 1 < m < M — ¢/2 + 1.
To improve the estimation performanee,should be chosen as
1 —1- ' large as possible in order to increase the effective aperture. How-
P un Z n)yp(n + 7)eI2mom ever, for a very large value of., fewer element terms c¢p(7)
n=0 [equal to2(M — m + 1) in number] are formed to compute the
forr =0 (19) singular values and singular vectors®fr) (and®). This re-
1 N . sults in larger perturbations of the singular values and singular
P (T) = N Z yi(n)yi(n +)e772men vectors so that the resolution capability decreases despite the in-
n=-T creased aperture [9], [24]. The choice of the optimal value of

form <0 (20) jscrucialtoachieve the best performance of direction estimation.

A compromise value of the subarray size should be determined

wherei = 1,2,.--, M andk = M for rj . (7). by halancing the effects of resolution and stability [9], [24]; we

whereasi = 1, 27 » M andi = 1forry, (T) experimentally determine it to be abaut/3 + 1 for high SNR.
3) Form the estimated cycllc vectdrand matrix® as (18) More details can be found in Section I11-D.
by using (19), (20), and (15). X Remark D: In practice, the cyclic correlation function has to
4) Perform the SVD on the estimated matidx as (16), pe evaluated from the array data with a finite number of snap-
whereL is replaced by, = (2Q + 1)L. shotsV, and estimation perturbation is unavoidabl&) i very
5) Calculate the minimum-norm estimate of the LP paranfgrge, the disturbances due to the finite number of snapshots may
etera as have a relatively large influence, and the effect of additive noise
4w will be included. On the other hand, if it is very small, the effect
Z i (21) of multiple lags may be neglected because very little informa-
= A tion about the cyclic correlation characteristics is contained. As
aresult,(? should be determined by a tradeoff. In this paper, we
6) Estimate the DOA of the coherent signals from thehoose? large enough so thaf , (7) are nonzero and signif-
g highest peak locations of the spectrum given bigantly varying for|r| > @ [17]. The stat|st|cal test [29] can be
1/|D(eiwo(d/c)siney 2 used to select a statistically significant valuepf

Remark B: We find that the proposed cyclic FBLP-based ap-
proachinvolves the computation of tt&, M cycliccorrelations D- OPtimal Subarray Size
of the sensor signals to form the cyclic matg#xin (18), i.e., it The optimal subarray size (i.e., the optimal order of LP model
requiresD(2N.. M) operations, whereas the cyclic MUSIC algoplus one) is desired to obtain the best estimation performance,
rithms [23], [50]based onthe SS[8]andimproved SS[37]requibait it generally depends on the number of desired coherent sig-
O(N-(M + (m—1)(2M —m))) andO(N, M?) operations for nals, the SNR, and the angle separation of incident signals. In
the evaluation ofthe cyclic matrices, respectively, whiérésthe the proposed approach, the directions are determined from the
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peak positions of the spectrulfiD(ei«o(¢/)sin6)|2 Here, we SS-based MUSIC [8], smoothed LP method [11], SS-based
investigate the choice of the subarray size to minimize the vaciyclic MUSIC [23], [50] and MODE (with linear constraint) [6],
ance of peak position error. [47], are performed, and the Cramér—Rao lower bound (CRLB)

The derivation of the error variance of spectral peak positigh] is calculated. For improving the estimation accuracy, the last
for direction estimation is tedious, so here, we sketch the derivaiep of the two-step procedure of the MODE algorithm is iterated
tion for the FLP method when the SNR is sufficiently highfive times (see [47] for more details). The results shown below
As the interfering signals are suppressed in the proposed ape all based on 100 independent trials, and the dimension of
proach, for notational simplicity, we assume that the interferirgignal subspace is assumed to be the number of desired coherent
signals are absent and that the noises are temporally and spgrals for the SS-based MUSIC and smoothed LP method.
tially uncorrelated white complex Gaussian noises, p.e-, ¢, Example 1—Performance versus SNWe assess the perfor-
B #0fork =1,2,---, p, and E{w;(n)w}(n)} = 026, , ~mance of the proposed approach with respect to the SNR of
andE{w;(n)wy(n)} = 0, whereE{-} andé; , denote the ex- the coherent signals. The direct-path signal from the BPSK 1
pectation and Kronecker delta. source impinges on the ULA ai/ = 8 sensors from angle

Then, the calculation in Appendix B results in the following; = —10° with 1.6 MHz baud ratec{ = 0.2 normalized to the
variance for the peak position error in terms of noise variancggmpling rate [17]), whereas one coherent arrival comes from
signal power, and subarray size 6> = 4° with mutipath coefficientd, = 1. There is one inter-

fering BPSK 2 signal that arrives frofy = 0° with 2.0 MHz
( 2(2m—1)o? baud rate¢ = 0.25 normalized to the sampling rate). Here, the
3m(m—1)L2|By|rs’ numbers of impinging signals and coherent signalspate 3
9,2 andg = 2. The number of snapshots and the subarray size
- areN = 512 andm = 5, where the number of subarrays is

m(m — 1)L|Bk|?rs

form<(M+1)/2

var(oy,) /= 2L = 8. The SNR of the direct-path signal from the desired co-
. <1 _ L(L-1) herent source is varied from5 dB to 30 dB, whereas that of
m(m — 1) the interference is fixed at 10 dB. X
(L—1)(2L—1) Therootmean-squared-errors (RMSESs) ofthe estindatasd

) , form > (M+1)/2  §,versus SNRare showninFig. 1. Because SS-based MUSIC and
22) smoothed LP method do not exploitthe temporal properties ofthe
incoming signals, they have no signal selective capability. Thus,
theyare unabletodistinguishthe desired signalsfromthe interfer-
ence correctly even when the dimension of signal subspace is as-
sumed to be the number of coherent signals. Although the RMSE
ofestimaté, obtained by MODE decreasesasthe SNRincreases,
the performance of MODE degrades severely atlow SNR, and the
(M + 1)/2. It is straightforward to show that the mimmumestimate& has aratherlarge RMSE. Exceptatvery low SNR, the
variance ofv; (and, henced) can be obtained when the subproposed approach performs better over SS-based MUSIC and

array sizem is aboutd/ /3 + 1. The derivation and result for the Smoothed LP method, and the proposed approach is more accu-
FBLP-based method are similar and are omitted here. rate than SS-based cyclic MUSIC withits RMSE very close tothe

We note that for two closely spaced coherent signals wifpRLBathigher SNR. Wealsofindthatthe performance ofthe pro-

equal power, aremarkable rule for the SS-based MUSIC schepr?éed approachisbetterthanthatof MODE atrelatively low SNR.
is thatmep, = 0.6(M -+ 1), which was derived by maximizing Example 2—Performance versus Number of Snapshafes:

the distance between the signal and noise subspaces [42]. examine the performance of the propo;ed ap'proach in _terms of
the number of snapshots, where the simulation conditions are

similar to those in Example 1, except that we fix the SNR of the
direct-path signal at 10 dB and vary the number of snapshots
The effectiveness of the proposed cyclic FBLP-based dired-from 32 to 1024. Fig. 2 shows the RMSEs of the estimates
tion estimation approachis illustrated through several numerigal andé, versus number of snapsha¥s As described in Ex-
examples, in which the desired coherent binary phase-shifhple 1, SS-based MUSIC and smoothed LP method fail to es-
keying (BPSK) signals can be distinguished from the interferingnate the directions of the desired coherent signals correctly,
BPSK signals that have different cycle frequencies. In trend MODE performs worse as the number of data is not suf-
simulations, the sensor separation of the ULAis= ¢/(2f.), ficiently large. When the length of the data is small, SS-based
where the center frequency and speed of propagatiofiare8 cyclic MUSIC degrades. However, the proposed approach out-
MHz ande = 3 x 10° m/s, respectively, the sensor outputperforms SS-based MUSIC, the smoothed LP method, SS-based
are collected at the rate = 8 MHz, and the lag parameté} cyclic MUSIC, and MODE, and it can estimate the directions
is chosen ag) = 10. The BPSK signals have a raised-cosinef coherent signals accurately even for a small number of snap-
pulse shape with 50% excess bandwidth. The additive noisessinets. As the number of snapshots is increased, the improvement
temporally and spatially uncorrelated white complex Gaussiafithe proposed approach is much larger than that of the other
noise with zero-mean and variangé. The SNR is defined as methods, although its asymptotic inefficiency is noticeable due
the ratio of the power of the source signals to that of the additite the finite length of data like the minimum norm LP method
noise at each sensor. For comparing the estimation performarj2é], [26], [35].

L + 3m(m—1)

wherew; denotes the “spatial frequencyyr(6) for conve-
nience, and-, is the autocorrelation of the signal(n) given
by rs = E{si(n)si(n)}. Therefore, we can find that v@¥)
increases with subarray size for m > (M + 1)/2, whereas
var(@y, ) has the minimum whem is aboutM /3 + 1 for m <

IV. NUMERICAL EXAMPLES
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Estimation Performance versus SNR (6, = -10°% Estimation Performance versus Angle Separation (-8)
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Fig. 1. RMSEs of the estimates &f andf, versus SNR by using SS-basedFig. 3. RMSEs of the estimates &ft versus angle separati@® by using
MUSIC (dotted line), smoothed LP (dashed line), SS-based cyclic MUSI8S-based MUSIC (dotted line), smoothed LP (dashed line), SS-based cyclic
(dash—dot line), MODE (solid line with small circles) , and the proposedlUSIC (dash—dot line), and the proposed approach (solid line) in Example 3
approach (solid line) in Example 1 (dash—dots line denotes CRLB). (dash—dots line denotes CRLB).

Example 4—Performance versus Subarray S study
the effect of the subarray size (i.e., the order of the prediction
model plus one) on the estimation performance of the proposed
approach. The simulation parameters are the same as that in
Example 1, except that the subarray sizés varied from 3 to
8, i.e., the number of subarraysag = 12 to 2.

For measuring the overall performance of estimating the direc-
32 o 128 256 s12 640768 1024  tions of coherent signals in terms of the subarray size, we define
Number of Snapshots N an “empirical RMSE (ERMSE)” of the estimated directions as

Estimation Performance versus Number of Snapshots (6, = 4°)

_ o “\\ . L NSNS (50 )
__________________________________ ERMSE=\| = > > (A -6) @3

...................................................... A o9 =1 k=1

e et

Estimation Performance versus Number of Snapshots (6, = -10°)
102 T T T T T T

RMSE (deg)

RMSE (deg)

E whereK is the number of trials, ar@k) is the estimate obtained
. ‘ e in the kth trial. When the SNR of the direct-path signaki2.5
32 64 128 256 512 640768 1024 B (B, 5dB, and 17.5 dB, the ERMSES of the estimétesd
Number of Snapshots N A . . . . « .
6> against subarray size are shown in Fig. 4, where the “empir-
Fig. 2. RMSEs of the estimates 6f and 9, versus number of snapshotsica'I CRLB"is calculated by averaging the corresponding CRLBs
by using SS-based MUSIC (dotted line), smoothed LP (dashed line), SS-basater the number of coherent signals. It is noted that the choice of
cyclic MUSIC (dash—dot line), MODE (solid line with small circles), and thesyharray sizer can significantly improve the performance of the
proposed approach (solid line) in Example 2 (dash—dots line denotes CRLBEJ'rOposed approach. We find that the best estimation can usually
be attained whem is aboutd//3 + 1 for medium and high SNR,
Example 3—Performance versus Angle Separatidiiere, whereas a reasonable estimation can be obtained with a larger
we test the accuracy of the proposed approach against the anglae ofin forlow SNR. The simulationresults agree with the dis-
separation between the desired coherent signals. The simuglassion in Section llI; therefore, acompromise value of subarray
tion parameters are identical to those in Example 1, except te&e should be determined by balancing the effects of resolution
the two coherent signals of BPSK 1 source come febfrwith  and stability. We experimentally choose it to be approximately
equal power, where the SNR is fixed at 10 dB, #@nd varied M /3 + 1 for high SNR [33], [39], [40].
from 1° to 10°. The RMSEs of the arrival angle estimates versus Example 5—Performance versus Number of Sensiesxt,
angle separatio®d are plotted in Fig. 3. The simulation resultsve consider the impact of the number of sensors on the esti-
show that the proposed approach can resolve the closely spavetion performance of the proposed approach. The simulation
coherent signals with much less RMSE than SS-based MUSKonditions are similar to that of Example 1, except that the
the smoothed LP method, and SS-based cyclic MUSIC in ge®NR of direct-path signal is assumed be 10 dB, and the sensor
eral. However, it is noted that the smoothed LP method givaamber is varied a8/ = 6, 8, 10, 12, 16, 20 and 24, where the
better estimates with less RMSE for small angle separationssinbarray size is chosen as= round A//3) + 1, where round
this empirical scenario. denotes round-off operation. The RMSEs of the estimétes
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(8) (SNR = -2.508) . (b) (SRR * 00B) We perform the proposed approach with= 0.2 and0.25
- to estimate the directions of the coherent signals from the two
_ cyclostationary sources. Due to the presence of two coherent
16° sources, the SS-based MUSIC and smoothed LP method cannot
distinguish the desired coherent signals from the interfering sig-
nals even though the dimension of signal subspace is assumed to
02—y 10— beq = 2 andq :__3, respectively, because they h_ave no signal
Subarray Size m Subarray Size m selective capability. To compare SS-based cyclic MUSIC and
(¢) (SNR = 5dB) (d) (SR = 17.5dB) the proposed approach, the averaged estimate and the RMSE
10% 10° for each angle estimate are illustrated in Table I. Because the
incoming signals are spatially close, SS-based cyclic MUSIC
gives estimates with larger errors. However, the proposed ap-
proach can estimate the DOA of the two coherent sources more

accurately.

ERMSE (deg)
ERMSE (deg)

ERMSE (deg)
ERMSE (deg)

102 102

3 4 5 6 7 8 3 4 5 6 7 8
Subarray Size m Subarray Size m V. CONCLUSIONS

_ _ , , Recently, many cyclostationarity-based direction estimation
Fig. 4. ERMSE's of the estimates 6f andf- versus subarray size by using : . . .
SS-based MUSIC (dotted line), smoothed LP (dashed line), SS-based cym@thOdS have been proposed for improving signal detection ca-
MUSIC (dash—dot line), and the proposed approach (solid line) in Examplep@bility. Unfortunately, most of them perform as poorly as the
(dash—dots line denotes the empirical CRLB). ordinary subspace-based methods in multipath propagation sce-
narios, which are often encountered in many communications
systems. To estimate the directions of narrowband coherent cy-
clostationary signals impinging on a ULA, we proposed a new
cyclic approach by applying the LP technique. In order to im-
prove the estimation performance, multiple lag parameters are
\\\\\\\ used to exploit the cyclic statistics sufficiently and effectively.
00T e e 1 Moreover, the optimal subarray size that minimizes the peak po-
sition variance was derived using linear approximation for suffi-

Estimation Performance versus Sensor Number (8, = -10°)

107

10° £

RMSE (deg)

Sensor Number M ciently high SNR. Since the computation of the cyclic array con-
, Estimation Performance versus Sensor Number (8, = 4°) variance matrix is avoided, the proposed approach has advan-
10 tages over SS-based cyclic MUSIC in computation load and im-
" plementation. The effectiveness of the proposed approach was
L S — 1 verified and compared with SS-based MUSIC, smoothed LP
W Tl method, SS-based cyclic MUSIC, and MODE through numer-
g T e | ical examples, and it was clarified that the proposed approach is
‘ ‘ ‘ ‘ ‘ ‘ ‘ superior in resolving the closely spaced coherent signals with a
8 8 10 12 16 20 24 small number of snapshots and at low SNR.
Sensor Number M
Fig.5. RMSEs of the estimates@f and¢,, versus number of sensors by using APPENDIX A
SS-based MUSIC (dotted line), smoothed LP (dashed line), SS-based cyclic PrROOF OFPROPOSITION
MUSIC (dash-dot line), and the proposed approach (solid line) in Example 5
(dash—dots line denotes CRLB). By defining A; and A, as the(m — 1) x p andL x p sub-

matrices of the\l x p array steering matrix in (3) consisting

and 6, versus number of sensors are plotted in Fig. 5. As #f the firstm — 1 andL rows, respectively, the noiseless signal
the previous examples, the proposed approach outperforv@storsry (n)andx,, ;(n)in (5)and (6) can be expressed com-
SS-based MUSIC, the smoothed LP method, and SS-bapeétly [8], [34]
cyclic MUSIC, and its superiority over the other methods 1
improves as the number of sensors is increased. zy1(n) =AD" s(n) (A1)

Example 6—Performance of Signal Selective Capa- oy, 1(n) = AL DN (DY " s(n))” (A2)
bility: We verify the signal selective capability of the proposed . o o o
cyclic FBLP-based approach to estimate the DOA of cohergfffere D = diag(c/on (@, efenm=(®), .. CM?TP(a))' From
signals from two sources with different cycle frequencies. Twd) (9), (11), and (A1), under the assumptions on the data

coherent signals with equal power from the BPSK 1 sour@éo‘)jel' we can rewrite the cyclic correlation veciey ;(7) in
as

impinge on an array oM = 10 sensors front; = —2.5°

andf, = 9°, whereas three coherent signals with equal power T ” —j2man

from the BPSK 2 source arrive froly = —13°, 6, = 4°, and f’l(T) B %f’l(n)fM*(n +)e _>,2mn Tl T
65 = 15°. The SNR for each signal is 10 dB, the number of =by (0)B"(s1(n + 7)s1(n)e™ 7)) D Ay

snapshots i = 512, and the subarray size is chosemas- 5. =7(r)ps BT DT AT (A3)
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TABLE |
COMPARISON OF THEAVERAGED ESTIMATES AND THE RMSES FOR EACH ANGLE ESTIMATE BY USING SS-BASED CycLIC MusIC
AND THE PROPOSEDCYCLIC FBLP-BASED APPROACH INEXAMPLE 6

0,=-25° 6,=9° 0,=-13 0,=4° s =15°
mean SS cyclic MUSIC -3.8712 8.4795 -12.8513 3.2666 14.8494

proposed method -2.9898 9.0442 -13.0865 4.5863 14.8529
RMSE  SS cyclic MUSIC 1.4205 0.6094 0.3634 1.1905 0.6453
proposed method 0.5251 0.1609 0.1238 0.6338 0.2334

wherep; = b} (6)8. Then, by some manipulations, we cartain the following relation between the LP parameters and the

re-expresse the cyclic matri () in (15) as correlations:
ﬂTA{ m—1
T 1y AT re(k) = ro(k —1i)a; B1
D (7)) =rS(T)pm p ?Al “ i=1 ( ) (&Y
ﬂTDL:—lAlT fork=1,2,---, m— 1,_Wherem —1_ > p. Then, the parame-
(1), Ay BAT (A4) ters{a;} can be determined by solving the— 1 Yule—Walker

equations. In fact, the LP parametdis } satisfy the relation

whereB = diag(f1, - - 84, By+1, -+ Bp). Equivalently, we [43], [44]
have

1 & i
—j2man ;= — Wl B2
(ijl(T) :<yl(n)yal(n+7—)e j2 > a m—1 ; MC ( )
=r{(Mp D MUDTAT (AS) |
B(7) :7,S(T)p1A2B*D—(J\l—1)A:1F. (A6) where 7, is a complex constant. From (B1) and (B2),

by some manipulations, we can succinctly express the
By substituting (A4) and (A6) into the definition of the cyclicYule-Walker equations aXa = g, whereX =H7’SA“£BA1T,
matrix ®(7) in (15), some straightforward manipulations give = 7sA{Bh, a = Aif/(m — 1), B = B*A; A»B, h =

us [ej(rn—l)wl , ej(rn—l)wz’ e ej(rn—l)wp ]T, andﬁ _ [nlej(rn—l)wl’
AB mped(m—wz ..y eim=1er ]I After some manipulations,
®(7) =r%(1)phy 2 AT we can explicitly express the equations that needed to be solved
s A B*D—(]\f—l)/ * 1
p1asz P as [43]
@ * AQB
=7 (T)PM [A I‘B} ip i
2 M+ Y i =1 (B3)
:7’3(7)P7\4CBA{ (A7) oty
whereI' = diag(vi, -, 7, Vg1, 7+ W) With v = (p1 0Bl )
BE [ phy i) e Teo (M =17 (6) fz)r iq = 1,2, " -, q,vi = 0 for fork=1,2, "'vp'WheTe“ki = 770l sin(0.5(m
;= g+ 1, -, p,andC = [AT, (A,T)T]L. D(wr — wi))/(m — 1)sin(0.5(wr, — w;)). Thus, the analyt-
Becauéa@k 7# ctor k=1 22’ "+ 4, whereas?, = 0 for ical expression of LP parametefs,;} can be obtained by
k—q+1, - p the ranks of the matriceB andT are given solving a smaller set op equations in they, coefficients,
N ean and then, the null-spectrum functioy(w) = |Do(w)|?

by rank B) = rankT') = ¢q. As A; and A, are the submatrices
of the Vandermonde matrix, we clearly have rarfd;) = o T o
min(m—1, p) andrankA,) = min(L, p). Consequently, since L, ejh ’ r’] e/t . ) ]dd,_gnda :.[1’ _?]1’ ---,_—am_1]

it has been assumed that > ¢ + 1 andq < p, we obtain When 1t ecrje 1S & itve nAO|se, ; e ZSt'mat@fi} can
that rankA;) > ¢. Additionally, the rank of the matri is edexphresse as; —d_ai + "“i' where ‘;z Is the error, .
given by rankC) = min(2L, p); therefore, raniC) = ¢ iff and the corresponding null-spectrum function can  be

can be exactly obtained, wheiey(w) = a'(w)a, a(w) =

H _ 2 _  =H =
2L > q. Thus, if2L > ¢, the rank of the cyclic matrix@(r) vivrltten as FA(W) - LD(WNT’ therehD(w) k_ @ .(w)a’
is equal to the number of the desired signaleegardless of ¢ | N d[l’ _?]1’ o _%’"Tl] » and the Ega zo_smorrls are
the coherence of the source signals. Herg, # 0 and the f_ate_ to t zApertur atg)[i)l(w)T 'I?h N f(w) ha7fW ere
assumption?(7) # 0 are used implicitly. m 28 = [0,~Ady, -, —Adp,]". Then, for the function
F(w) around the spatial frequeneyi, we have the following
APPENDIX B Taylor series expansion for sufficiently largé
DERIVATION OF VARIANCE OF SPECTRAL PEAK POSITION
By defining the correlation of noiseless signalgn) and F(@n) m F(wr) + F' (wr)(@r — wi) (B4)

zr(n) asry(i — k) = E{z;(n)z}(n)}, from (5), we can ob- 0=F'(0) = F'(w) + F"(w)(@r —wi) (B5)



718 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 4, APRIL 2001

where F'(w) = dF(w)/dw and F"'(w) = dI'(w)/dw, and consider the “well-separated” signals [i.en — 1)|w; — wi| >
the higher-order derivative terms are neglected. Thus, the esli-where the two equations (B3) and (B9) can be approximated
mation errorAw, of the spatial frequencyy, is given approxi- as diagonal. As a result, we obtakw;, =~ —2Im{D;(w)}/m,

mately by [5], [45] where the LP parametefs; } andD;(w;,) are given by
R F’(wk)
A . = . — LR — Jwrt
Wi Wi Wi F”(wk) m 1 Z e’ (B].O)
Re{a” (w)aat d(w;)} 1 =t )
= S .~ -__ - —j m—1)w —
Re{dH(wk)aaHd(wk) +EH(wk)aaHd(wk)} Dufwn) ==7205 ¢ Yy (wi)W (n)a (B11)
Re{Dl (wk)de(wk)} (B6)
- d" (wp)aal d(wy,) andd” (wi,)a ~ jm /2. For sufficiently largelV, the variance of

the estimateyy, is then given by

whered(w) = da(w)/dw, andd(w) = dd(w)/dw (the terms

neglected in approximation af@(1/N)). var(Qy,) ~ %(Re{EﬂDl(wk)|2}}—Re{E{Df(wk)}}).
From (7), we get the following forward prediction error m (B12)
es,(n) for the estimate(a, } From the fact that for matriX and vectore with compatible
dimensions thake¢ = (I ® ¢*')ved X "), where ve¢X™) is a
er,1(n) =Yigm—1(n) — y7 (n)a vector obtained by listing the columns & one beneath the

. T idm-2H An—  —T A other beginning with the leftmost column, amddenotes the

=si(n)f" D AT Aa+wpy(nja (BY) Kronecker operation, we can get

where A = [@(w1),@(w2), . 8(wp)], Wy,1(n) = [wigm—1 1

(1), Wigm—2(n), -, wi(n)]¥, andDy(wy,) = @ (wi)a@ = 0 E{|Dy(wn)I*} = 5. — a3 (wi.) ez (w) (B13)

is used implicitly. Then, we obtain the prediction error power o

e(n)
where® = (I, ®-ET)E_{veo(W?(n))vec”(W?(n))}(IL ®

I a*), I istheL x L identity matrix, and-,, = E{sx(n)s;(n)}.

Z les.a By performing some manipulations, tieh element of the ma-

I trix X is given by
1 %« * y—{(m—
~1 {sl<n>sl<n>¢ () B D= Al omfm—1),  forfi—k =0
- Ao D™ Bap(w) + 2 5., - ) —li—klo?
e ik Jli—k)wn —-1)?% foro<|i—kl<m-1
.Re{s* H B'D (m I)AHW — ¢ /(m ) ’ ¢ zm
{51t () JW (n)a} 0. for i k| > m 1

+a" Wl ()W f(n)a} (B8) (B14)

whereg(w) = AHAG = [Di(w;), Di(ws), -+, Di(wy)]¥, wherei, k=1, 2, ---, L.From (B13) and (B14), we then have

W s(n) = [wy, 1(n), Wy 2(n), -, Wy, (n)]*, and the small

terms are neglected in the approximation. By following the idea  E{|D; (w;)|?}

of [45], we can find the perturbatioB; (wy ) by an approximate 5 9 m—1
minimization of the prediction error powe¢n) in (B8). Letting = g < L 5 Z k(L — k))
the derivative ok(n) with respect taD; (ws) be zero, it follows Lere, \m—1" (m-1)? &=~

that _ m(2m — 1)o?

=" /7 B15
3(m - 1)L27’sk ( )
L—-1
T ] — —j(m—Lwy,  H W — B9
; & wr)dw) ¢ a; (we)Ws(nja  (B9) for L > m[i.e.,m < (M +1)/2], and we get
for k = 1,2,---,p, whereé(wy) = [s1(n)c/tm-Dlwi—w)  E{|Dy(wr) |2}
SQ(H)Cj(l—l—nl—l)(u:z—wk)’ ce, Sp(n)cj(l—l—rn—l)(u:p—u:k)]T' and m
ax(wn) = [1, &%, .. oilUT = T\t o1y Z KL= H)
Therefore, by solving the twp x p equations (B3) and (B9) o 2
to get{a;} and D;(wy), we can obtain the approximate error  _ < (L — (2L - 1))
Auw;, of peak positionw;, from (B6). For obtaining a simple -1 L75k 3m(m —1)

expression of the variance of spectral peak position, here, we (B16)
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for L <m[i.e.,m > (M +1)/2]. On the other hand, we have [21]

E{D}(w)} =0 (B17)
2]

becausef {w; (n)wy(n)} = 0. Thus, by substituting (B15)—
(B17) into (B12), (22) can be obtained. [ | [23]
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