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Influences of Spray Parameters and Powder Composition
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Abstract The oxidation during plasma spraying of metal coatings in the ambient atmosphere always occurs.
The resultant oxide inclusion not only reduces the wettability of molten droplets to splat surface and subsequently
inhibits the lamellar bonding formation, but also degrades the performance of the coatings. It is still great
challenge to effectively reduce the oxide contents in atmospheric plasma sprayed metal coatings by exploring
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novel approaches. Accordingly, we revently proposed a novel approach to achieve oxide-free molten metal
droplets in atmospheric plasma spraying by utilizing sacrificial oxidation of boron in the in-flight molten droplet
following by subsequent evaporation for high performance metal coating deposition.

Therefore, in this study, boron containing NiCrCu spray powders were designed to examine the effect
of powder composition and spray parameters on the oxide inclusion in the NiCrCu coatings and to clarify the
sacrifical oxidation effect of boron during in-flight of molten droplet. Two powders with nominal compositions of
NiCrCul.5B and NiCrCu4B were used for atmospheric plasma spraying (APS) in a particle size range of 30~50
um. The in-flight particle temperature during plasma spraying was measured by commercial particle velocity and
temperature diagnosis system DPV-2000. The microstructure of the coating was characterized by scanning electron
microscopy and X-ray diffraction. The contents of oxygen and boron in the coating were measured by chemical
approach using Nitrogen and Oxygen Determinator and lon Coupled Plasma Mass Spectropy, respectively. The
porosity of the coatings was estimated by image analyzing. The microVickers hardness and adhesive strength of
the coatings were measured.

The measurement of spraying molten particle temperature yielded the values higher than 2000 , which
fulfilled the requirement to evaporate boron oxide. The results showed that the porosity of the coatings decreased
with the increase of the arc power and the oxygen content in the coatings decreased with the increase of the torch
traverse speed. However, the change of the oxygen content in the NiCrCu4B coatings plasma-sprayed with higher
boron content in spray powder against the spray distance presented the trend that always decreased with the
increase of the spray distance. This trend was opposite to those observed for thermal spraying of metal coatings.
Taking the fact that the boron content in the coating always decreased with the increase of spray distance, the
results confirmed that the oxidation of boron and subsequently the evaporation continuously occurred and the in-
flight oxidation of alloying elements was suppressed by the preferential sacrificial oxidation of boron in the molten
droplets. Thus, the oxide inclusion in the NiCrCu4B coatings was mainly introduced by post-deposition oxidation.

On the other hand, the results showed that the oxygen content in the NiCrCul.5B coatings decreased with the
increase of the spray distance up to spray distance of 110 mm and then turned to increase with the further increase
of the spray distance. Taking account of boron content in the in-flight NiCrCu particle, it could be concluded that
there existed a critical boron content of about 0.6 wt.% in the in-flight particle below which the boron could not
provide sufficient protection of other alloying elements from oxidation.

When the oxide inclusion was mainly resulted from post-deposition oxidation, the oxygen content in the
coating was dependent on cooling condition of coating during deposition. It was confirmed that the oxygen content
in the NiCrCu4B coating samples was significantly reduced through enhancing the cooling effect from the back of
the substrate. As a result, NiCrCuB coating with an oxygen content of 0.6 wt.% was deposited. The measurement
yielded the adhesive strength of about 40 MPa for NiCrCu coating which was influenced little by spray conditions.
It was also found that the boron content changed with spray conditions which influenced the consume of boron
during in-flight. The residual boron was present in the coating as dispersed borides by which the NiCrCu coating
is strengthened. As a result, it was found that with the increase of boron content in the coating from 0.2 wt.% to 3.5
wt.% the hardness of NiCrCu coating was increased linearly from 280 HV,; to 700 HV,.

Keywords Spray parameters; NiCrCu coating; Composition; Microstructure; Mechanical property; Oxidation
mechanism
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Fig. 1 Surface morphologies of spray powders: (a)NiCrCul.5B; (b) NiCrCu4B



1 NiCrCul.5B  NiCrCu4B
Table 1 Compositions of NiCrCul.5B and NiCrCu4B powders (wt.%)

Powder designation Ni Cu Cr B
NiCrCul.5B 62.5 225 13.8 12
NiCrCu4B 60.4 21.9 13.8 3.9

2 (a) NiCrCul.5B; (b) NiCrCu4B
Fig. 2 Cross-sectional microstruture of two spray powders: (a)NiCrCul.5B; (b)NiCrCu4B
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(ELEMENTRAC ONH-P) 300 gf
ICP-OES Aglient-5110 20s Instron1195
0.2
(HXD-1000TMC/LCD) mm-min*
2

Table 2 Plasma spray parameters

Parameters Value
Arc power/kW 35/40/45
Primary plasma gas flow (Ar) /(L-min™) 45
Auxiliary plasma gas flow (H,) /(L-min™) 6
Spray distance/mm 80/110/140/170/200
Torch traverse speed/(mm-s™) 80/300/600
2 &R 5 AT
2.1
. 45 kW
NiCrCul.5B 110
mm 300 mm/s 35
kW 40 kW 45 kW
: 45 kW
NiCrCuB
0.82% 0.67%
0.53%

100 um

4 NiCrCul.5B (a) 35kW; (b)40kW; (c) 45kW
Fig. 4 Cross-sectional microstructures of NiCrCul.5B coatings plasma-sprayed at different arc powers:
(a) 35 kW; (b) 40 kW; (c) 45 kW
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5 NiCrCul.5B (a) 80 mm/s; (b) 300 mm/s; (c) 600 mm/s
Fig. 5 Cross-sectional microstructures of NiCrCul.5B coatings plasma-sprayed at different torch traverse speeds:
(a) 80 mm/s; (b) 300 mm/s; (c) 600 mm/s
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Fig. 6 Typical microstructure of NiCrCul.5B coating for
EDS analysis of different phases
3 NiCrCul.5B
Table 3 Typical EDS analysis results of typical phases in the NiCrCul.5B coatings
Ni Cu Cr 0]
1 5.75 5.94 53.47 34.83
2 62.14 23.69 13.62 0.76
2.3
APS NiCrCuB
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Fig. 10 Effect of spray distance on the microstructure of atmopheric plasma-sprayed NiCrCul.5B coatings:
(a) 80 mm; (b) 110 mm:; (c) 140 mm; (d) 170 mm; (e) 200 mm
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Fig. 11 Effect of spray distance on the microstructure of atmospheric plasma-sprayed NiCrCu4B coatings:
(2)80 mm:; (b) 110 mm; (c) 140 mm; (d) 170 mm; (e) 200 mm
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