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Any problem in 

computer science 

can be solved with 

another layer of 

indirection.

--David Wheeler

British Computer Scientist

(1927--2004)
⚫ Fellow of the Royal Society (1981)

⚫ Computer Pioneer Award (1985)

⚫ Fellow, Computer History Museum 

(2003)



Bare Machine

3

In a bare machine, the only kind of address is a 
physical address, corresponding to address lines of 
actual hardware memory.
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Managing Memory in Bare Machines

▪ Early machines only ran one program at a time, with this 
program having unrestricted access to all memory and all 
I/O devices

– This simple memory management model was also used in turn 
by the first minicomputer and first microcomputer systems

▪ Subroutine libraries became popular, were written in 
location-independent form

– Different programs use different combination of routines

▪ To run program on bare machines, use linker and loader 
program to relocate library modules to actual locations in 
physical memory
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Reason 1: Simplifying Memory for Apps

Why do we need Virtual Address Space ?

 Programmers should see the 
straight-forward memory 
layout as we assume→

 User-space applications should 
think they own all of memory

 So we give them a virtual view 
of memory
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Reason 2: Protection Between Processes

◼ With a bare system, addresses issued with loads/stores 
are real physical addresses

◼ This means any program can issue any address, 
therefore can access any part of memory, even areas 
which it doesn’t own
– Ex: The OS data structures

◼ We should send all addresses through a mechanism 
that the OS controls, before they make it out to DRAM 
- a translation and protection mechanism 

Why do we need Virtual Address Space ?



Names for Virtual Memory Locations
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◼Machine Language address
➢ As specified in machine code

◼ Virtual Address (VA)
➢ ISA specifies translation of machine code address into virtual 

address of program variable (sometime called effective/logical 
address)

◼ Physical Address (PA)
➢ Operating System specifies mapping/translation of virtual 

address into name for a physical memory location

Visible to Users Managed by hardware/OS



The Common Denominator：Address Translation
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◼ Large, private, and uniform abstraction achieved through 
address translation 
– User process operates on virtual address (VA)
– HW translates VA to physical address (PA) on every memory 
reference

◼ Through address translation
– Control which physical locations (DRAM and/or disk) can be 
referred to by a process
– Dynamic allocation and relocation of physical backing store 
(where in DRAM and/or disk)

◼ Address translation HW and policies controlled by the OS and 
protected from user 



▪ Problems of the bare memory system

– Each process limited to a non-overlapping contiguous 
physical memory region (space doesn’t start from 
address 0…)

– Everything must fit in the region

▪ Location-independent programs

– Ease programming and storage management 

→ need for a Base register

▪ Protection

– Independent programs should not affect each other 
inadvertently

→ need for a Bound register 

▪ Multiprogramming drives requirement for resident 
supervisor software (e.g. OS) to manage context switches 
between multiple programs 9
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Simple Base and Bound Translation
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Load X

Program 
Address Space

Logical
Address

 Base (Staring address) and Bound (size of region) registers are 
visible/accessible only when processor is running in the 
supervisor mode (privileged control registers)

 OS switches bound/base register pair for different programs

+

Physical
Address
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(Scheme used on all Cray vector supercomputers prior to X1, 2002)
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Separate Areas for Program and Data
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What is an advantage of this separation?
- Shared program segment with independent data segment
- Very fast translation

 Each program has only one data segment

(Scheme used on all Cray vector supercomputers prior to X1, 2002)
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Base and Bound Machine
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Can fold addition of base register into (register + immediate) address 
calculation using a carry-save adder (sums three numbers with only a 
few gate delays more than adding two numbers)

PC
Inst. 

Cache D Decode E M
Data 

Cache W+

Main Memory (DRAM)

Memory Controller

Physical 
Address

Physical 
Address

Physical Address

Physical 
Address

Data Base 
Register

+

Logical 
Address

Physical 
Address

Program Base 
Register

+

Logical 
Address

Data Bound 
Register Bounds Violation?

≥
Bounds Violation?

≥

Program Bound 
Register

Critical 

Path!



External Fragmentation with Segments
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As users come and go, the storage is "fragmented“(external)
◼ Plan ahead to avoid bubbles
◼ Programs are moved around to compact the storage

User 6 (32KB) 

arrives



Adding Disks to Hierarchy
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Need to devise a mechanism to “Connect” memory and 
disk in the memory hierarchy.



Two Ingredients to Modern Virtual Memory
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In a multi-tasking system, virtual memory supports the illusion of 
a large, private, and uniform memory space to each process

◼ Ingredient A: independence and protection
– location-independent programs
– each process sees a large, contiguous address space 
without holes (for programming convenience)

– each process’s memory is private, i.e., protected from 
access by other processes (for sharing and protection, Readable? 

Writeable? Executable?)

◼ Ingredient B: demand paging (for hierarchy and efficiency)

– Dynamic allocation and relocation of physical pages (where 
in DRAM and/or swap disk)
–  Capacity of secondary storage (swap space on disk)
–  Speed of primary storage (DRAM) 
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Virtual Address Space

Program 1

Virtual Address Space

Program 2

Modern Paged Virtual Memory System

Pages

Identical & Isolated

Swap Page



Paged Virtual Memory System (How)

▪ Program-generated virtual address is split into {VPN + offset}
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▪ Fixed-sized pages (mostly 4KB) in virtual address space are 
mapped to physical address using Page Table (PT) 
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▪ Paging makes it possible to store a large contiguous virtual memory 
space using non-contiguous physical memory pages

▪ For each program, an independent Page Table is maintained
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Private Address Space per User
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⚫ Each user has a Page Table contains an entry for each user page
⚫ Persistent OS  residing in memory to control all page tables



Paging Simplifies Memory Allocation

▪ Fixed-size pages can be kept on OS free list and 
allocated as needed to any process
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▪ Process memory usage can easily grow and shrink 
dynamically

▪ Paging suffers from internal fragmentation (inside 
Page) where not all bytes on a page are used

– Much less of an issue than external fragmentation or 
compaction for common page sizes (4-8KB)

– But could be problematic when many CPUs change to 
larger page sizes (e.g. 1MiB page)



Coping with Limited Primary Storage

▪ Paging reduces fragmentation, but still face problems when 
a program would not fit into primary memory  (DDR), and 
has to move data to/from secondary storage (drum, disk)
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▪ Early approach:
– Manual overlays, programmer explicitly copies code and data in 

and out of primary memory
• Tedious coding, error-prone (jumping to non-resident code?)
• IBM Cell microprocessor using in Playstation-3 had explicitly 

managed local store!
• Many new “deep learning” accelerators have similar arch.

▪Using virtual memory pages:
– Put a physical page in primary or secondary storage wherever 

suitable
– Maintain its position in a virtual memory page table entry.



Where should Page Tables Reside ?
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◼ Space required by the page table (PT) is proportional to 
the address space, number of users, …
➢ Space requirement is large (4GB space = 1M PT Entries of 4KB 

pages, each user = 4MB for 32-bit entry)

◼ Bad Idea: Keep PT of current user in special registers
➢ May not be feasible for large page tables
➢ Too expensive to keep in registers
➢ Increases the cost of context swap

◼ Good Idea: Keep PTs in the main memory
➢ Use one Page Table Base Register (PTBR) to hold PT’s 

location in the main memory
➢ Needs one additional reference to read PT ( to retrieve the 

page base address) and another to access the actual data
➢ Double the number of memory references! 



Page Tables Live in Memory
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Simple linear page 
tables are too large, 
so hierarchical page 
tables are commonly 
used (see later)

Common for modern 
OS to place page 
tables in kernel’s 
virtual memory (page 
tables can be swapped 
to secondary storage)

OS Kernel Address Space

OS changes PTBR 
when switching users



Linear Page Table
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Page Table Walk

Hierarchical Page Table Walk: SPARC v8
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31             11            0

Virtual Address Index 1         Index 2            Index 3              Offset

31                      23                       17                  11                0

Context
Table
Register

Context
Register

Base PTR

Context Table

PTP

L1 Table
(256 entry)

PTP

L2 Table
(64 entry)

Physical Address PPN                  Offset

PTE

L3 Table
(64 entry)

◼ Hierarchical Page Table is a tree structure, PTBR is the root.
◼ Only create page table when necessary, reduces memory footprint
◼ Termed as page table walk , usually performed in hardware unit.



Two-Level Page Tables in Physical Memory
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VA1

User 1

User1/PA1

User2/PA1

Level 1 PT 
(User 1) 

Level 1 PT 
(User 2) 

VA1

User 2

Level 2 PT 
(User 2) 

Virtual Address 
Spaces

Physical 
Memory

Level 2 PT 
(User 1) 

Virtual Address 
Spaces

◼ PTs of different users are independent
◼ PTs of each user can be non-contiguous



Address Translation & Protection Check
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◼ Every instruction/data access needs address translation and 
protection checks

Physical Address

Virtual Address

Address
Translation

Virtual Page No. (VPN) offset

Physical Page No. (PPN) offset
Permission?

Protection 
Check

◼ Address translation is very expensive!
In a multiple-level page table, each reference requires several 
memory accesses

◼ Privilege/Authority Check

◼ Read/Write Check

◼ Executable Check

For current user that issues the access:



Translation-Lookaside Buffers (TLB)
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Idea: Cache the address translation of frequently used pages

A good VM design needs to be fast (~ one cycle) and space efficient

TLB hit → Single 
Cycle Translation

TLB miss → Page 
Table Walk to refill

Dirty bit → Modified page, 
need write-back to disk



TLB Designs

▪ Typically 32-128 entries, usually fully associative

– Each entry maps a large page, hence less spatial locality across 
pages ➔ more likely that two entries conflict

– Sometimes larger TLBs (256-512 entries) are 4-8 way set-
associative

– Larger systems sometimes have multi-level TLBs (L1 and L2)

▪ Replacement policy： Random, FIFO or LRU 

▪ TLB Reach: Size of largest virtual address space that can be 
simultaneously mapped by TLB

– Example: 64 TLB entries, 4KB pages, one page per entry

– TLB Reach = _____________________________________________?

28

64 entries * 4 KB = 256 KB (if contiguous)



Variable-Size Page TLB
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Some Systems support multiple page sizes (managed by OS)

Page mask Page Size Pagemask Page Size

0_0000_0000 4KB 0_0011_1111 256KB

0_0000_0011 16KB 0_1111_1111 1MB

0_0000_1111 64KB 1_1111_1111 2MB

MIPS using Pagemask mark different Page size (OS manage)

Small PageLarge Page



Handling a TLB Miss

▪ Software (MIPS, Alpha)

– TLB miss causes an TLB miss exception and the OS walks the 
page tables and reloads TLB. 

– Very expensive on out-of-order superscalar processor as 
requires a flush of pipeline to jump to trap handler.
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▪ TLB misses when:
– The page exists in memory → just add the missing entry in TLB.
– The page doesn’t exist in memory→ transfer control to the OS

▪ Hardware (SPARC v8, x86, ARM, PowerPC, RISC-V)

– A memory management unit (MMU) walks the page tables and 
reloads the TLB.

– If a missing page (data or PT)  is encountered during the TLB 
reloading, MMU gives up and signals a Page Fault exception for 
the original instruction.



Handling a TLB Miss
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TLB Hit

① Processor sends Virtual 

Address (VA)

② Extract Virtual Page 

Number(VPN) from VA. Query 

TLB using VPN.

③ TLB returns Page Table Entry 

(PTE).

④ Combine PTE with Page Offset 

to get Physical Address (PA). 

Query Cache using PA.

⑤ Send data to processor



Handling a TLB Miss
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TLB Miss

① Processor sends Virtual 

Address (VA)

② Extract Virtual Page Number 

(VPN) from VA. Query TLB 

using VPN.

③ TLB miss. Query Memory 

using Page Table Entry 

Address (PTEA) to get Page 

Table Entry (PTE)

④ Save VPN to PTE mapping in 

TLB. 

⑤ Combine PTE with Page Offset 

to get Physical Address (PA). 

Query Cache using PA.

⑥ Send data to processor.

What if there is no 
valid PT Entry? 



Page Fault Exception
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◼ Occurs when an instruction references a memory page 
that is not in main memory.

Virtual Address Space

Case 1: Page is swapped to 
secondary storage (e.g. disk)

Program 1

Physical 

Memory

Disk 

Storage

Page Table

Case 2: Page is virtually allocated 
but not really created (e.g. malloc)

Virtual Address Space

Program 2

Physical 

Memory

Disk 

Storage

Page Table

?



Page Fault Exception
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◼ Since it takes a long time to transfer a page (in msecs), page faults 
are handled completely in software by OS

◼ Page Fault Handler (of OS) does the following:
– Assign an unused page in DRAM

⚫ If no unused page is left, a page currently in DRAM is swapped out
 Replace using Pseudo-LRU, implemented in software
 Write-back to disk if the replaced page is ‘dirty’
 Update PTE of that VPN->PPN as invalid/DPN

– If virtual page exist in disk, Initiate transfer of the requested 
page from disk to DRAM,  storing in the newly assigned page

⚫ Another job may be run on the CPU while the first job waits for the 
requested page to be read from disk

– Page table entry of the requested page is updated with a (now) 
valid PPN

– Return and re-execute the exception-causing instruction
⚫ Need for precise exceptions



Handling VM-related exceptions

▪ Handling TLB miss needs a hardware or software mechanism to 
refill TLB （usually fulfilled by hardware as MMU）

▪ Handling Page Fault (e.g., page is on disk) needs restartable 
exception so software handler can resume after retrieving page

– Precise exceptions are easy to restart

– Can be imprecise but restartable, but this complicates OS software

▪ A protection violation may abort process
– But often handled the same as a page fault

35
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Address Translation – Putting it all together

◼ Often occurs in malloc()

◼ Known as a special “page fault”
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Address Translation – Putting it all together



Summary: Caching v.s Demand Paging
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Summary: TLB, Cache and Page
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Situation TLB Page Table 
Entry

D-Cache Physical Page Operations

D$ hit Hit If TLB hits, 
PTE valid

Hit If D$ hits, page 
exists

No need to check Phys. 
Mem

D$ miss Hit If TLB hit, 
PTE valid

Miss If TLB hits, page 
exists

Update D$

TLB miss Miss If D$ hit, 
PTE valid

Hit If D$ hits, page 
exists

Update TLB, access TLB 
again, then access D$

TLB+D$ 
both miss

Miss Hit Miss If PT hits, page 
exists

Update TLB/D$, then 
access TLB/D$ again

Page Fault Miss Miss Miss Miss Page Fault process

TLB、Page Table、D-Cache and Physical Page (Total 2^4=16 cases)

◼ IF TLB hit or D$ hit → PTE valid

◼ IF PTE valid → Physical Page exists in DDR

C
o

s
t



Summary: TLB, Cache and Page
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Page-Based Virtual-Memory Machine
(Hardware Page-Table Walk)

41

▪ Caches are accessed using translated physical addresses

▪ MMU directly uses physical address to access page tables
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Sequential Access to TLB & Cache
(Physical Index/Physical Tag, PIPT)
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VPN                     Page offsetVA

k

Direct-map Cache 

=
hit?

DataPhysical Tag

Tag Physical Cache Index

Adding one more stage for TLB access will increase:
◼ For I-Cache: more branch misprediction penalty
◼ For D-Cache: more load latency (critical path!)

TLB

PPN                      Page OffsetPA

ASID



Address Translation in CPU Pipeline

▪Need to cope with additional latency of TLB:

–   Slow down the clock?
• Unacceptable for modern CPUs

–   Pipeline the TLB and cache access?
• Sub-optimal solution (still long latency)

–   Virtual address caches

–   Parallel TLB/cache access 43
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Virtual-Address Caches
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▪ One-cycle latency cache access in case of cache hit (+)

▪ Homonym and Aliasing problems (-)

CPU
Physical
Cache

TLB Primary
MemoryVA PA

Alternative: place the cache before the TLB

Virtual 
Cache

CPU

VA

(StrongARM)PA
TLB

Primary
Memory



Homonym in Virtual Address
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VA
PA1

PA2

Virtual Address 
Space

Same virtual address mapped 
to two physical pages

Physical 
Pages

PT2

▪ Conflicting virtually-tagged entry (both TLB and VIVT cache)

▪ Software (OS): Cache and TLB needs to be flushed on 
context switch

▪ Hardware: add Address Space Identifier (ASID) into Tags 

Virtual Address 
Space



Aliasing in Virtual-Address Caches
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VA1

VA2

Page Table

Data Pages

PA

Two virtual pages share 
one physical page

General Solution:  Prevent aliases coexisting in cache

Software Solution (i.e., OS) for direct-mapped cache (early SPARCs):
VAs of shared pages must agree in cache index bits; this ensures 
(forces) conflict for all VAs accessing the same PA

1st Copy of Data at PA

2nd Copy of Data at PA

Tag Data

Virtual cache can have two copies of 
same physical data. Writes to one 
copy not visible to reads of other!

VA1

VA2



Concurrent Access to TLB & Cache
(Virtual Index/Physical Tag，VIPT)

47

Index L-bits of VA is available without consulting the TLB.
→ Cache and TLB accesses can begin simultaneously!
→ Tag comparison is made after both accesses are completed.
→ Actually, these are still Physical Index Cache

Direct-map Cache 
2L

 blocks
2b-byte block

Virtual
Index

PPN                      Page Offset

=
hit?

DataPhysical Tag
Tag

PA

VPN                              L           bVA

kTLBASID

If Cases: L + b ≤ k
L=Cache Index, b=Cache Block, k=Page Size, 



Concurrent Access to TLB & Large L1
The problem with L1 Cache > Page size

48

Aliasing: (VA1  VA2) both map to the same PA

PPNa     Data

PPNa     Data

VA1

VA2

VA1: a=1, offset = 0x555, → PPNa

VA2: a=0, offset = 0x555, → PPNa

VPN             a         Page Offset      bVA

Virtual Index

k

If Cases: L + b > k

L=Cache Index, b=Cache Block, k=Page Size, 

What if VA1.a  VA2.a ?

TLB

PPN          Page Offset      b

Tag

PA

= hit?

ASID

Direct-mapped

VIPT Cache

Physical Tag



Virtual-Index Physical-Tag Caches: 
Associative Organization

49
How does this scheme scale to larger caches? Not Good

Direct-map
2L

 blocks

VPN           a         L = k-b        bVA

Virtual Index

k
Direct-map

2L
 blocks

2a

=
hit?

Data

Physical
Tag

=
2a

After the PPN is known, 2a physical tags are compared
→ e.g. 32 KB L1 Cache = 8-way associative (Intel)

TLB

PPN                       Page Offset

Tag

PA

ASID



A solution via Second-Level Cache
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◼ PIPT: Applied for most L2/L3/LLC cache design 
◼ Unified: L2 cache backs up both Instruction and Data L1 caches
◼ Inclusive: L2 has copies of all cache lines in both L1 D-Cache and 

I-Cache

CPU

L1 Data 
Cache

L1 
Instruction 

Cache

Unified L2 
Cache

Inclusive
Physical Index

Physical Tag

Reg
File Memory

Memory

Memory

Memory

Physical-index physical-tag (PIPT) , Inclusive L2 Cache:



Anti-Aliasing (VIPT) Using L2 [MIPS R10000,1996]
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▪ Aliasing: (VA1  VA2, a1  a2) both map to PA 

▪ VA1 is already in L1 and L2 (with ‘a’ bits) 

▪ After VA2 is resolved to PA, L2 detects a 
collision. (Field ‘a’ is different: a1  a2）

▪ VA1 will be purged from L1 and L2, and VA2 will 
be loaded   no aliasing ! 

VPN                a    Page Offset        bVA

Virtual Index
Direct-mapped

VIPT L1

PPNa      DataVA1

TLB

PPN         Page Offset       b

Tag

PA

= hit?
PPN

ASID
PPNa      DataVA2

Direct-Mapped 

PIPT L2 

PA    a1       Data

into L2 tag 

a2



Virtually Addressed Cache
(Virtual Index/Virtual Tag, VIVT)

52

PC
Inst. 

Cache D Decode E M
Data 

Cache W+

Virtual Address Virtual Address

Inst. 
TLB Data 

TLB

L2 Cache
Physical Address

Physical Address

$ Miss?$ Miss?

Page-Table 
Base Register Hardware Page 

Table Walker

• Directly use full virtual address for L1 cache access
• Only check TLB on L1 cache miss
• Use physical address for L2 cache access

Main Memory 
(DRAM)

Instruction data
Physical Address

Memory 
Controller



PA   VPN1     Data

entire VPN into L2 tag 

Anti-Aliasing (VIVT) using L2
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VPN       Page Offset       b

TLB

PPN        Page Offset        b

VA

PA

Virtual Tag

Physical Index & Tag

VA1    Data

“Virtual Tag”

▪ Inclusive PIPT L2 is used 

▪ L2 uses entire VPN for collision check

ASID

Virtual Index Direct-mapped

VIVT L1

Inclusive
PIPT L2 

VPN2

VA2    Data



Summary：Modern Virtual Memory Systems
 Illusion of a large, private, uniform store
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Protection & Privacy
 Several users, each with their private 

address space and one or more shared 
address spaces

Demand Paging

 Provides the ability to run programs 
larger than the primary memory

 Hides differences in physical memory 
layouts 

Cost
 The price is address translation on each 

memory reference
 Use TLB and Virtual Indexed cache

OS

useri

Primary
Memory

Secondary
Storage

VA PAmapping

TLB



Why a Privileged Architecture?
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◼ Profiles (Simple Embedded w/wo Protection, Unix-like OS, Cloud OS)

◼ Privileges and Modes
◼ Privileged Features

• CSRs
• Instructions

◼ Memory Addressing
• Translation
• Protection

◼ Trap Handling
• Exceptions
• Interrupts

◼ Counters
• Time
• Performance



RISC-V Privilege Modes

▪Machine mode (M-mode, highest privileges)

– A.K.A monitor mode, microcode mode, …

▪Hypervisor-Extended Supervisor Mode (HS-Mode)

▪Supervisor Mode (S-mode)

▪User Mode (U-mode, lowest privileges)

▪Supported combinations of modes:
– M         (simple embedded systems) 

– M, U        (embedded systems with security)

– M, S, U        (systems running Unix-like OS)

– M, S, HS, U         (systems running hypervisors, Cloud OS Capable)
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Physical Memory Protection (PMP)
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Core
Bus Master 

Device
Core

Bus Master 
Device

PMP PMP ioPMP ioPMP

SoC Bus Matrix

Main Memory
Device control 

registers
Device RAM

Machine Physical Address Space

0
x
0
…
0
0
0

0
x
F
…
F
F
F

An optional physical memory protection (PMP) unit provides per-hart machine-
mode control registers to allow physical memory access privileges (read, write, 
execute) to be specified for each physical memory region 



M-Mode Controls PMPs

▪M-mode has access to entire machine after 
reset

▪Configures PMPs and ioPMPs to contain each 
active context inside a physical partition

▪Can even restrict M-mode access to regions 
until next reset

▪M-mode can dynamically swap PMP settings 
to run different security contexts on a RISC-V 
hardware thread (hart)
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Extended Page Tables (EPT) in HS Mode
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Guest Physical Address

Guest Page Tables

Guest Linear 
Address Space

Guest Physical Address

Guest Page Tables

Guest Linear 
Address Space

Host Physical Address

Extended Page Table

Hypervisor

Virtual Machine Virtual Machine

Extended Page Table
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Memory Protection for RISC-V Modes
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RISC-V Secure Embedded Systems
(M, U modes)

▪ M-mode runs secure boot and runtime monitor

▪ Embedded code runs in U-mode

▪ Physical memory protection (PMP) on U-mode accesses

▪ Interrupt handling can be delegated to U-mode code
– User-level interrupt support (N-extension)

▪ Provides arbitrary number of isolated security contexts
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RISC-V Virtual Memory Architectures
(M, S, U modes)

▪ Designed to support current Unix-style operating systems

▪ Sv32 (RV32)
– Demand-paged 32-bit virtual-address spaces

– 2-level page table

– 4 KiB pages, 4 MiB megapages

▪ Sv39 (RV64)
– Demand-paged 39-bit virtual-address spaces

– 3-level page table

– 4 KiB pages, 2 MiB megapages, 1 GiB gigapages

▪ Sv48, Sv57, Sv64 (RV64)
– Sv39 + 1/2/3 more page-table levels
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S-Mode runs on top of M-mode

▪ M-mode runs secure boot and monitor

▪ S-mode runs OS 

▪ U-mode runs application on top of OS or M-mode
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M-mode security monitor
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Device 2 
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Device 1 
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PMP
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PMP
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◼ PMP checks are also applied to page-table accesses for virtual-address 
translation, for which the effective privilege mode is S. Optionally, PMP checks 
may additionally apply to M-mode accesses.

◼ PMP can grant permissions to S and U modes, which by default have none, and 
can revoke permissions from M-mode, which by default has full permissions. 
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Privilege Level Change

◼ Combine privilege level change with 
interrupt/exception transfer
– switch to next higher privilege 
level on interrupt/exception
– get back to lower privilege level on 
return from interrupt/exception

◼ Interrupt/exception transfer is the 
only gateway to privileged mode
– lower-level code can never escape 
into privileged mode
– lower-level code don’t even need 
to know there is a privileged mode 



Exceptions

▪ An exception is a transfer of control to the OS kernel in 
response to some event  (i.e., change in processor state)

– Kernel is the memory-resident part of the OS

– Examples of events: divide by 0, arithmetic overflow, page 
fault, I/O request completes, typing Ctrl-C

User code Kernel code

Exception
Exception processing

by exception handler
• Return to I_current

• Return to I_next

• Abort

Event I_current
I_next



0
1

2
...

n-1

Exception Tables

▪ Each type of event has a 
unique exception number k

▪ k = index into exception table 
(a.k.a. interrupt vector)

▪ Handler k is called each time 
exception k occursException Table

Code for  

exception handler 0

Code for 

exception handler 1

Code for

exception handler 2

Code for 

exception handler n-1

...

Exception numbers



Asynchronous Exceptions (Interrupts)

▪ Caused by events external to the processor

– Indicated by setting the processor’s interrupt pin

– Handler returns to “next” instruction

▪ Examples:

– Timer interrupt

• Every few msec, an external timer chip triggers an interrupt

• Used by the kernel to take back control from user program

–  I/O interrupt from external device

• Hitting Ctrl-C at the keyboard

• Arrival of a packet from a network

• Arrival of data from a disk



Synchronous Exceptions

▪ Caused by events that occur as a result of executing an instruction:

– Traps
• Intentional, set program up to “trip the trap” and do something

• Examples: software interrupts, system calls, gdb breakpoints

• Returns control to “next” instruction

– Faults
• Unintentional but possibly recoverable 

• Examples: page faults (recoverable), protection faults (unrecoverable), 
floating point exceptions

• Either re-executes the failed (“current”) instruction or aborts

– Aborts
• Unintentional and unrecoverable

• Examples: illegal instruction, parity error, machine check

• Aborts current program



System Calls

Number Name Description

0 read Read file

1 write Write file

2 open Open file

3 close Close file

4 stat Get info about file

57 fork Create process

59 execve Execute a program

60 _exit Terminate process

62 kill Send signal to process

 Each x86-64 system call has a unique ID number

 Examples:



Virtual Memory Use Today - 1

▪ Servers/desktops/laptops/smartphones have full 
demand-paged virtual memory

– Portability between machines with different memory sizes

– Protection between multiple users or multiple tasks

– Share small physical memory among active tasks

– Simplifies implementation of some OS features

▪ Vector supercomputers have translation and protection 
but rarely complete demand-paging

▪ (Older Crays: base&bound, Japanese & Cray X1/X2: pages)
– Don’t waste expensive CPU time thrashing to disk (make jobs fit in memory)

– Mostly run in batch mode (run set of jobs that fits in memory)

– Difficult to implement restartable vector instructions
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Virtual Memory Use Today - 2

▪Most embedded processors and DSPs provide 
physical addressing only
Can’t afford area/speed/power budget for virtual memory support

Often there is no secondary storage to swap to!

Programs custom written for particular memory configuration in product

Difficult to implement restartable instructions for exposed architectures

▪Mostly DNN accelerators don’t use (complex) virtual 
address
Working as IP or plug-in device, not running OS

Fixed task workloads and pattern

Still using some address mapping techniques (not complicated)

Hungry for energy and area, must be as efficient as possible
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Next Lecture：Branch Prediction
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