
Computer Architecture

 Lecture 07 – Address Translation & Virtual Mem

Tian Xia

Institute of Artificial Intelligence and Robotics
Xi’an Jiaotong University

http://gr.xjtu.edu.cn/web/pengjuren

http://gr.xjtu.edu.cn/web/pengjuren

2

Any problem in

computer science

can be solved with

another layer of

indirection.

--David Wheeler

British Computer Scientist

(1927--2004)
⚫ Fellow of the Royal Society (1981)

⚫ Computer Pioneer Award (1985)

⚫ Fellow, Computer History Museum

(2003)

Bare Machine

3

In a bare machine, the only kind of address is a
physical address, corresponding to address lines of
actual hardware memory.

PC
Inst.

Cache D Decode E M
Data

Cache W+

Main Memory (DRAM)

Memory Controller

Physical
Address

Physical
Address

Physical
Address

Physical
Address Physical Address

Managing Memory in Bare Machines

▪ Early machines only ran one program at a time, with this
program having unrestricted access to all memory and all
I/O devices

– This simple memory management model was also used in turn
by the first minicomputer and first microcomputer systems

▪ Subroutine libraries became popular, were written in
location-independent form

– Different programs use different combination of routines

▪ To run program on bare machines, use linker and loader
program to relocate library modules to actual locations in
physical memory

4

5

Reason 1: Simplifying Memory for Apps

Why do we need Virtual Address Space ?

 Programmers should see the
straight-forward memory
layout as we assume→

 User-space applications should
think they own all of memory

 So we give them a virtual view
of memory

6

Reason 2: Protection Between Processes

◼ With a bare system, addresses issued with loads/stores
are real physical addresses

◼ This means any program can issue any address,
therefore can access any part of memory, even areas
which it doesn’t own
– Ex: The OS data structures

◼ We should send all addresses through a mechanism
that the OS controls, before they make it out to DRAM
- a translation and protection mechanism

Why do we need Virtual Address Space ?

Names for Virtual Memory Locations

7

◼Machine Language address
➢ As specified in machine code

◼ Virtual Address (VA)
➢ ISA specifies translation of machine code address into virtual

address of program variable (sometime called effective/logical
address)

◼ Physical Address (PA)
➢ Operating System specifies mapping/translation of virtual

address into name for a physical memory location

Visible to Users Managed by hardware/OS

The Common Denominator：Address Translation

8

◼ Large, private, and uniform abstraction achieved through
address translation
– User process operates on virtual address (VA)
– HW translates VA to physical address (PA) on every memory
reference

◼ Through address translation
– Control which physical locations (DRAM and/or disk) can be
referred to by a process
– Dynamic allocation and relocation of physical backing store
(where in DRAM and/or disk)

◼ Address translation HW and policies controlled by the OS and
protected from user

▪ Problems of the bare memory system

– Each process limited to a non-overlapping contiguous
physical memory region (space doesn’t start from
address 0…)

– Everything must fit in the region

▪ Location-independent programs

– Ease programming and storage management

→ need for a Base register

▪ Protection

– Independent programs should not affect each other
inadvertently

→ need for a Bound register

▪ Multiprogramming drives requirement for resident
supervisor software (e.g. OS) to manage context switches
between multiple programs 9

OS

P
h

ys
ic

al
 M

e
m

o
ry

Program 1

Program 2

Simple Base and Bound Translation

Simple Base and Bound Translation

10

Load X

Program
Address Space

Logical
Address

 Base (Staring address) and Bound (size of region) registers are
visible/accessible only when processor is running in the
supervisor mode (privileged control registers)

 OS switches bound/base register pair for different programs

+

Physical
Address

Bounds
Violation?≥

(Scheme used on all Cray vector supercomputers prior to X1, 2002)

P
h

ys
ic

al
 M

em
o

ry

Current
Segment

Base
Register Base Physical Address

Bound
Register

Segment Length

OS

Separate Areas for Program and Data

11

What is an advantage of this separation?
- Shared program segment with independent data segment
- Very fast translation

 Each program has only one data segment

(Scheme used on all Cray vector supercomputers prior to X1, 2002)

P
h

ys
ic

al
 M

em
o

ry

Data
Segment

Program
Segment

Physical
Address

Program Bound
Register

Program Base
Register +

Logical
Address

≥
Bounds

Violation?

Program Counter

Physical
Address

Load X

Store X

Program
Address Space

Data Bound
Register

Data Base
Register +

Bounds
Violation?

Logical
Address

≥
Effective Address

Register

Base and Bound Machine

12

Can fold addition of base register into (register + immediate) address
calculation using a carry-save adder (sums three numbers with only a
few gate delays more than adding two numbers)

PC
Inst.

Cache D Decode E M
Data

Cache W+

Main Memory (DRAM)

Memory Controller

Physical
Address

Physical
Address

Physical Address

Physical
Address

Data Base
Register

+

Logical
Address

Physical
Address

Program Base
Register

+

Logical
Address

Data Bound
Register Bounds Violation?

≥
Bounds Violation?

≥

Program Bound
Register

Critical

Path!

External Fragmentation with Segments

13

As users come and go, the storage is "fragmented“(external)
◼ Plan ahead to avoid bubbles
◼ Programs are moved around to compact the storage

User 6 (32KB)

arrives

Adding Disks to Hierarchy

14

Need to devise a mechanism to “Connect” memory and
disk in the memory hierarchy.

Two Ingredients to Modern Virtual Memory

15

In a multi-tasking system, virtual memory supports the illusion of
a large, private, and uniform memory space to each process

◼ Ingredient A: independence and protection
– location-independent programs
– each process sees a large, contiguous address space
without holes (for programming convenience)

– each process’s memory is private, i.e., protected from
access by other processes (for sharing and protection, Readable?

Writeable? Executable?)

◼ Ingredient B: demand paging (for hierarchy and efficiency)

– Dynamic allocation and relocation of physical pages (where
in DRAM and/or swap disk)
– Capacity of secondary storage (swap space on disk)
– Speed of primary storage (DRAM)

16

Virtual Address Space

Program 1

Virtual Address Space

Program 2

Modern Paged Virtual Memory System

Pages

Identical & Isolated

Swap Page

Paged Virtual Memory System (How)

▪ Program-generated virtual address is split into {VPN + offset}

17

▪ Fixed-sized pages (mostly 4KB) in virtual address space are
mapped to physical address using Page Table (PT)

Virtual Address Space
Pages for Job-1

0
1
2
3

Physical
Memory

Pages

1

0

3

2

Page Table
for Job-1

0
1
2
3

▪ Paging makes it possible to store a large contiguous virtual memory
space using non-contiguous physical memory pages

▪ For each program, an independent Page Table is maintained

Physical Page Number (PPN) concat
Physical Address

Virtual Page Number (VPN) OffsetVirtual Address

V
P

N

P
P

N

PPN
PPN
PPN
PPN

Look-up in

Page Table

Private Address Space per User

18

Virtual Address Space
Pages for Job 1

Page Table
for Job 1 Physical

Memory
Pages

0
1
2
3

0
1
2
3

1

0

1
3
3
3
2

0
0

2

2

1

Operating
System
Pages

Virtual Address Space
Pages for Job 2

Page Table
for Job 2

0
1
2
3

0
1
2
3

Virtual Address Space
Pages for Job 3

Page Table
for Job 3

0
1
2
3

0
1
2
3

⚫ Each user has a Page Table contains an entry for each user page
⚫ Persistent OS residing in memory to control all page tables

Paging Simplifies Memory Allocation

▪ Fixed-size pages can be kept on OS free list and
allocated as needed to any process

19

▪ Process memory usage can easily grow and shrink
dynamically

▪ Paging suffers from internal fragmentation (inside
Page) where not all bytes on a page are used

– Much less of an issue than external fragmentation or
compaction for common page sizes (4-8KB)

– But could be problematic when many CPUs change to
larger page sizes (e.g. 1MiB page)

Coping with Limited Primary Storage

▪ Paging reduces fragmentation, but still face problems when
a program would not fit into primary memory (DDR), and
has to move data to/from secondary storage (drum, disk)

20

▪ Early approach:
– Manual overlays, programmer explicitly copies code and data in

and out of primary memory
• Tedious coding, error-prone (jumping to non-resident code?)
• IBM Cell microprocessor using in Playstation-3 had explicitly

managed local store!
• Many new “deep learning” accelerators have similar arch.

▪Using virtual memory pages:
– Put a physical page in primary or secondary storage wherever

suitable
– Maintain its position in a virtual memory page table entry.

Where should Page Tables Reside ?

21

◼ Space required by the page table (PT) is proportional to
the address space, number of users, …
➢ Space requirement is large (4GB space = 1M PT Entries of 4KB

pages, each user = 4MB for 32-bit entry)

◼ Bad Idea: Keep PT of current user in special registers
➢ May not be feasible for large page tables
➢ Too expensive to keep in registers
➢ Increases the cost of context swap

◼ Good Idea: Keep PTs in the main memory
➢ Use one Page Table Base Register (PTBR) to hold PT’s

location in the main memory
➢ Needs one additional reference to read PT (to retrieve the

page base address) and another to access the actual data
➢ Double the number of memory references!

Page Tables Live in Memory

22

Virtual Address Space
Pages for Job 1

Physical
Memory

Pages

0
1
2
3

Page Table
for Job 1

1

0

1
3
3

2

0

2

Virtual Address Space
Pages for Job 2

0
1
2
3

Page Table
for Job 2

Simple linear page
tables are too large,
so hierarchical page
tables are commonly
used (see later)

Common for modern
OS to place page
tables in kernel’s
virtual memory (page
tables can be swapped
to secondary storage)

OS Kernel Address Space

OS changes PTBR
when switching users

Linear Page Table

23

Page Table Walk

Hierarchical Page Table Walk: SPARC v8

24

31 11 0

Virtual Address Index 1 Index 2 Index 3 Offset

31 23 17 11 0

Context
Table
Register

Context
Register

Base PTR

Context Table

PTP

L1 Table
(256 entry)

PTP

L2 Table
(64 entry)

Physical Address PPN Offset

PTE

L3 Table
(64 entry)

◼ Hierarchical Page Table is a tree structure, PTBR is the root.
◼ Only create page table when necessary, reduces memory footprint
◼ Termed as page table walk , usually performed in hardware unit.

Two-Level Page Tables in Physical Memory

25

VA1

User 1

User1/PA1

User2/PA1

Level 1 PT
(User 1)

Level 1 PT
(User 2)

VA1

User 2

Level 2 PT
(User 2)

Virtual Address
Spaces

Physical
Memory

Level 2 PT
(User 1)

Virtual Address
Spaces

◼ PTs of different users are independent
◼ PTs of each user can be non-contiguous

Address Translation & Protection Check

26

◼ Every instruction/data access needs address translation and
protection checks

Physical Address

Virtual Address

Address
Translation

Virtual Page No. (VPN) offset

Physical Page No. (PPN) offset
Permission?

Protection
Check

◼ Address translation is very expensive!
In a multiple-level page table, each reference requires several
memory accesses

◼ Privilege/Authority Check

◼ Read/Write Check

◼ Executable Check

For current user that issues the access:

Translation-Lookaside Buffers (TLB)

27

Idea: Cache the address translation of frequently used pages

A good VM design needs to be fast (~ one cycle) and space efficient

TLB hit → Single
Cycle Translation

TLB miss → Page
Table Walk to refill

Dirty bit → Modified page,
need write-back to disk

TLB Designs

▪ Typically 32-128 entries, usually fully associative

– Each entry maps a large page, hence less spatial locality across
pages ➔ more likely that two entries conflict

– Sometimes larger TLBs (256-512 entries) are 4-8 way set-
associative

– Larger systems sometimes have multi-level TLBs (L1 and L2)

▪ Replacement policy： Random, FIFO or LRU

▪ TLB Reach: Size of largest virtual address space that can be
simultaneously mapped by TLB

– Example: 64 TLB entries, 4KB pages, one page per entry

– TLB Reach = ___?

28

64 entries * 4 KB = 256 KB (if contiguous)

Variable-Size Page TLB

29

Some Systems support multiple page sizes (managed by OS)

Page mask Page Size Pagemask Page Size

0_0000_0000 4KB 0_0011_1111 256KB

0_0000_0011 16KB 0_1111_1111 1MB

0_0000_1111 64KB 1_1111_1111 2MB

MIPS using Pagemask mark different Page size (OS manage)

Small PageLarge Page

Handling a TLB Miss

▪ Software (MIPS, Alpha)

– TLB miss causes an TLB miss exception and the OS walks the
page tables and reloads TLB.

– Very expensive on out-of-order superscalar processor as
requires a flush of pipeline to jump to trap handler.

30

▪ TLB misses when:
– The page exists in memory → just add the missing entry in TLB.
– The page doesn’t exist in memory→ transfer control to the OS

▪ Hardware (SPARC v8, x86, ARM, PowerPC, RISC-V)

– A memory management unit (MMU) walks the page tables and
reloads the TLB.

– If a missing page (data or PT) is encountered during the TLB
reloading, MMU gives up and signals a Page Fault exception for
the original instruction.

Handling a TLB Miss

31

TLB Hit

① Processor sends Virtual

Address (VA)

② Extract Virtual Page

Number(VPN) from VA. Query

TLB using VPN.

③ TLB returns Page Table Entry

(PTE).

④ Combine PTE with Page Offset

to get Physical Address (PA).

Query Cache using PA.

⑤ Send data to processor

Handling a TLB Miss

32

TLB Miss

① Processor sends Virtual

Address (VA)

② Extract Virtual Page Number

(VPN) from VA. Query TLB

using VPN.

③ TLB miss. Query Memory

using Page Table Entry

Address (PTEA) to get Page

Table Entry (PTE)

④ Save VPN to PTE mapping in

TLB.

⑤ Combine PTE with Page Offset

to get Physical Address (PA).

Query Cache using PA.

⑥ Send data to processor.

What if there is no
valid PT Entry?

Page Fault Exception

33

◼ Occurs when an instruction references a memory page
that is not in main memory.

Virtual Address Space

Case 1: Page is swapped to
secondary storage (e.g. disk)

Program 1

Physical

Memory

Disk

Storage

Page Table

Case 2: Page is virtually allocated
but not really created (e.g. malloc)

Virtual Address Space

Program 2

Physical

Memory

Disk

Storage

Page Table

?

Page Fault Exception

34

◼ Since it takes a long time to transfer a page (in msecs), page faults
are handled completely in software by OS

◼ Page Fault Handler (of OS) does the following:
– Assign an unused page in DRAM

⚫ If no unused page is left, a page currently in DRAM is swapped out
 Replace using Pseudo-LRU, implemented in software
 Write-back to disk if the replaced page is ‘dirty’
 Update PTE of that VPN->PPN as invalid/DPN

– If virtual page exist in disk, Initiate transfer of the requested
page from disk to DRAM, storing in the newly assigned page

⚫ Another job may be run on the CPU while the first job waits for the
requested page to be read from disk

– Page table entry of the requested page is updated with a (now)
valid PPN

– Return and re-execute the exception-causing instruction
⚫ Need for precise exceptions

Handling VM-related exceptions

▪ Handling TLB miss needs a hardware or software mechanism to
refill TLB （usually fulfilled by hardware as MMU）

▪ Handling Page Fault (e.g., page is on disk) needs restartable
exception so software handler can resume after retrieving page

– Precise exceptions are easy to restart

– Can be imprecise but restartable, but this complicates OS software

▪ A protection violation may abort process
– But often handled the same as a page fault

35

PC
Inst
TLB

Inst.
Cache D Decode E M

Data
TLB

Data
Cache W+

TLB miss? Page Fault?
Protection violation?

TLB miss? Page Fault?
Protection violation?

36

Address Translation – Putting it all together

◼ Often occurs in malloc()

◼ Known as a special “page fault”

37

Address Translation – Putting it all together

Summary: Caching v.s Demand Paging

38

Summary: TLB, Cache and Page

39

Situation TLB Page Table
Entry

D-Cache Physical Page Operations

D$ hit Hit If TLB hits,
PTE valid

Hit If D$ hits, page
exists

No need to check Phys.
Mem

D$ miss Hit If TLB hit,
PTE valid

Miss If TLB hits, page
exists

Update D$

TLB miss Miss If D$ hit,
PTE valid

Hit If D$ hits, page
exists

Update TLB, access TLB
again, then access D$

TLB+D$
both miss

Miss Hit Miss If PT hits, page
exists

Update TLB/D$, then
access TLB/D$ again

Page Fault Miss Miss Miss Miss Page Fault process

TLB、Page Table、D-Cache and Physical Page (Total 2^4=16 cases)

◼ IF TLB hit or D$ hit → PTE valid

◼ IF PTE valid → Physical Page exists in DDR

C
o

s
t

Summary: TLB, Cache and Page

40

Page-Based Virtual-Memory Machine
(Hardware Page-Table Walk)

41

▪ Caches are accessed using translated physical addresses

▪ MMU directly uses physical address to access page tables

PC
Inst.
TLB

Inst.
Cache D Decode E M

Data
Cache W+

Main Memory (DRAM)

Memory Controller
Physical
Address

Physical
Address

Physical Address

Virtual
Address

Virtual
Address

Physical
Address

Physical
Address

Page Fault?
Protection violation?

Page Fault?
Protection violation?

Page Fault?
Protection violation?

Data
TLB

Miss? Miss?
Hardware

Page Table

Walker

Page-Table Base Register
(Physical Address)

Sequential Access to TLB & Cache
(Physical Index/Physical Tag, PIPT)

42

VPN Page offsetVA

k

Direct-map Cache

=
hit?

DataPhysical Tag

Tag Physical Cache Index

Adding one more stage for TLB access will increase:
◼ For I-Cache: more branch misprediction penalty
◼ For D-Cache: more load latency (critical path!)

TLB

PPN Page OffsetPA

ASID

Address Translation in CPU Pipeline

▪Need to cope with additional latency of TLB:

– Slow down the clock?
• Unacceptable for modern CPUs

– Pipeline the TLB and cache access?
• Sub-optimal solution (still long latency)

– Virtual address caches

– Parallel TLB/cache access 43

PC
Inst
TLB

Inst.
Cache D Decode E M

Data
TLB

Data
Cache W+

TLB miss? Page Fault?
Protection violation?

TLB miss? Page Fault?
Protection violation?

Virtual-Address Caches

44

▪ One-cycle latency cache access in case of cache hit (+)

▪ Homonym and Aliasing problems (-)

CPU
Physical
Cache

TLB Primary
MemoryVA PA

Alternative: place the cache before the TLB

Virtual
Cache

CPU

VA

(StrongARM)PA
TLB

Primary
Memory

Homonym in Virtual Address

45

VA
PA1

PA2

Virtual Address
Space

Same virtual address mapped
to two physical pages

Physical
Pages

PT2

▪ Conflicting virtually-tagged entry (both TLB and VIVT cache)

▪ Software (OS): Cache and TLB needs to be flushed on
context switch

▪ Hardware: add Address Space Identifier (ASID) into Tags

Virtual Address
Space

Aliasing in Virtual-Address Caches

46

VA1

VA2

Page Table

Data Pages

PA

Two virtual pages share
one physical page

General Solution: Prevent aliases coexisting in cache

Software Solution (i.e., OS) for direct-mapped cache (early SPARCs):
VAs of shared pages must agree in cache index bits; this ensures
(forces) conflict for all VAs accessing the same PA

1st Copy of Data at PA

2nd Copy of Data at PA

Tag Data

Virtual cache can have two copies of
same physical data. Writes to one
copy not visible to reads of other!

VA1

VA2

Concurrent Access to TLB & Cache
(Virtual Index/Physical Tag，VIPT)

47

Index L-bits of VA is available without consulting the TLB.
→ Cache and TLB accesses can begin simultaneously!
→ Tag comparison is made after both accesses are completed.
→ Actually, these are still Physical Index Cache

Direct-map Cache
2L

 blocks
2b-byte block

Virtual
Index

PPN Page Offset

=
hit?

DataPhysical Tag
Tag

PA

VPN L bVA

kTLBASID

If Cases: L + b ≤ k
L=Cache Index, b=Cache Block, k=Page Size,

Concurrent Access to TLB & Large L1
The problem with L1 Cache > Page size

48

Aliasing: (VA1 VA2) both map to the same PA

PPNa Data

PPNa Data

VA1

VA2

VA1: a=1, offset = 0x555, → PPNa

VA2: a=0, offset = 0x555, → PPNa

VPN a Page Offset bVA

Virtual Index

k

If Cases: L + b > k

L=Cache Index, b=Cache Block, k=Page Size,

What if VA1.a VA2.a ?

TLB

PPN Page Offset b

Tag

PA

= hit?

ASID

Direct-mapped

VIPT Cache

Physical Tag

Virtual-Index Physical-Tag Caches:
Associative Organization

49
How does this scheme scale to larger caches? Not Good

Direct-map
2L

 blocks

VPN a L = k-b bVA

Virtual Index

k
Direct-map

2L
 blocks

2a

=
hit?

Data

Physical
Tag

=
2a

After the PPN is known, 2a physical tags are compared
→ e.g. 32 KB L1 Cache = 8-way associative (Intel)

TLB

PPN Page Offset

Tag

PA

ASID

A solution via Second-Level Cache

50

◼ PIPT: Applied for most L2/L3/LLC cache design
◼ Unified: L2 cache backs up both Instruction and Data L1 caches
◼ Inclusive: L2 has copies of all cache lines in both L1 D-Cache and

I-Cache

CPU

L1 Data
Cache

L1
Instruction

Cache

Unified L2
Cache

Inclusive
Physical Index

Physical Tag

Reg
File Memory

Memory

Memory

Memory

Physical-index physical-tag (PIPT) , Inclusive L2 Cache:

Anti-Aliasing (VIPT) Using L2 [MIPS R10000,1996]

51

▪ Aliasing: (VA1 VA2, a1 a2) both map to PA

▪ VA1 is already in L1 and L2 (with ‘a’ bits)

▪ After VA2 is resolved to PA, L2 detects a
collision. (Field ‘a’ is different: a1 a2）

▪ VA1 will be purged from L1 and L2, and VA2 will
be loaded no aliasing !

VPN a Page Offset bVA

Virtual Index
Direct-mapped

VIPT L1

PPNa DataVA1

TLB

PPN Page Offset b

Tag

PA

= hit?
PPN

ASID
PPNa DataVA2

Direct-Mapped

PIPT L2

PA a1 Data

into L2 tag

a2

Virtually Addressed Cache
(Virtual Index/Virtual Tag, VIVT)

52

PC
Inst.

Cache D Decode E M
Data

Cache W+

Virtual Address Virtual Address

Inst.
TLB Data

TLB

L2 Cache
Physical Address

Physical Address

$ Miss?$ Miss?

Page-Table
Base Register Hardware Page

Table Walker

• Directly use full virtual address for L1 cache access
• Only check TLB on L1 cache miss
• Use physical address for L2 cache access

Main Memory
(DRAM)

Instruction data
Physical Address

Memory
Controller

PA VPN1 Data

entire VPN into L2 tag

Anti-Aliasing (VIVT) using L2

53

VPN Page Offset b

TLB

PPN Page Offset b

VA

PA

Virtual Tag

Physical Index & Tag

VA1 Data

“Virtual Tag”

▪ Inclusive PIPT L2 is used

▪ L2 uses entire VPN for collision check

ASID

Virtual Index Direct-mapped

VIVT L1

Inclusive
PIPT L2

VPN2

VA2 Data

Summary：Modern Virtual Memory Systems
 Illusion of a large, private, uniform store

54

Protection & Privacy
 Several users, each with their private

address space and one or more shared
address spaces

Demand Paging

 Provides the ability to run programs
larger than the primary memory

 Hides differences in physical memory
layouts

Cost
 The price is address translation on each

memory reference
 Use TLB and Virtual Indexed cache

OS

useri

Primary
Memory

Secondary
Storage

VA PAmapping

TLB

Why a Privileged Architecture?

55

◼ Profiles (Simple Embedded w/wo Protection, Unix-like OS, Cloud OS)

◼ Privileges and Modes
◼ Privileged Features

• CSRs
• Instructions

◼ Memory Addressing
• Translation
• Protection

◼ Trap Handling
• Exceptions
• Interrupts

◼ Counters
• Time
• Performance

RISC-V Privilege Modes

▪Machine mode (M-mode, highest privileges)

– A.K.A monitor mode, microcode mode, …

▪Hypervisor-Extended Supervisor Mode (HS-Mode)

▪Supervisor Mode (S-mode)

▪User Mode (U-mode, lowest privileges)

▪Supported combinations of modes:
– M (simple embedded systems)

– M, U (embedded systems with security)

– M, S, U (systems running Unix-like OS)

– M, S, HS, U (systems running hypervisors, Cloud OS Capable)

48

Physical Memory Protection (PMP)

57

Core
Bus Master

Device
Core

Bus Master
Device

PMP PMP ioPMP ioPMP

SoC Bus Matrix

Main Memory
Device control

registers
Device RAM

Machine Physical Address Space

0
x
0
…
0
0
0

0
x
F
…
F
F
F

An optional physical memory protection (PMP) unit provides per-hart machine-
mode control registers to allow physical memory access privileges (read, write,
execute) to be specified for each physical memory region

M-Mode Controls PMPs

▪M-mode has access to entire machine after
reset

▪Configures PMPs and ioPMPs to contain each
active context inside a physical partition

▪Can even restrict M-mode access to regions
until next reset

▪M-mode can dynamically swap PMP settings
to run different security contexts on a RISC-V
hardware thread (hart)

58

Extended Page Tables (EPT) in HS Mode

59

Guest Physical Address

Guest Page Tables

Guest Linear
Address Space

Guest Physical Address

Guest Page Tables

Guest Linear
Address Space

Host Physical Address

Extended Page Table

Hypervisor

Virtual Machine Virtual Machine

Extended Page Table

60

M
Mode

Main
Memory

Physical

Address

Memory Protection for RISC-V Modes

P
h

y
s
ic

a
l

A
d

d
re

s
s

S
Mode

MMU
Translation

Page
Protection

Check

U
Mode

(in virtual
address)

Virtual

Address

Config

U
Mode

(in physical
address)

C
o

n
fi

g

PMP
Check

HS
Mode

C
o

n
fi

g

EPT
(if VM)

RISC-V Secure Embedded Systems
(M, U modes)

▪ M-mode runs secure boot and runtime monitor

▪ Embedded code runs in U-mode

▪ Physical memory protection (PMP) on U-mode accesses

▪ Interrupt handling can be delegated to U-mode code
– User-level interrupt support (N-extension)

▪ Provides arbitrary number of isolated security contexts

61

M-mode monitor

U-mode
process 1

U-mode
process 2

Device 2
Interrupts

Device 1
Interrupts

Other
Interrupts

PMP PMP

RISC-V Virtual Memory Architectures
(M, S, U modes)

▪ Designed to support current Unix-style operating systems

▪ Sv32 (RV32)
– Demand-paged 32-bit virtual-address spaces

– 2-level page table

– 4 KiB pages, 4 MiB megapages

▪ Sv39 (RV64)
– Demand-paged 39-bit virtual-address spaces

– 3-level page table

– 4 KiB pages, 2 MiB megapages, 1 GiB gigapages

▪ Sv48, Sv57, Sv64 (RV64)
– Sv39 + 1/2/3 more page-table levels

62

S-Mode runs on top of M-mode

▪ M-mode runs secure boot and monitor

▪ S-mode runs OS

▪ U-mode runs application on top of OS or M-mode

63

M-mode security monitor

U-mode
system process

Device 2
Interrupts

Device 1
Interrupts

Secure
Interrupts

PMP

S-mode
OS

U-mode
app

PMP

VM

◼ PMP checks are also applied to page-table accesses for virtual-address
translation, for which the effective privilege mode is S. Optionally, PMP checks
may additionally apply to M-mode accesses.

◼ PMP can grant permissions to S and U modes, which by default have none, and
can revoke permissions from M-mode, which by default has full permissions.

64

Privilege Level Change

◼ Combine privilege level change with
interrupt/exception transfer
– switch to next higher privilege
level on interrupt/exception
– get back to lower privilege level on
return from interrupt/exception

◼ Interrupt/exception transfer is the
only gateway to privileged mode
– lower-level code can never escape
into privileged mode
– lower-level code don’t even need
to know there is a privileged mode

Exceptions

▪ An exception is a transfer of control to the OS kernel in
response to some event (i.e., change in processor state)

– Kernel is the memory-resident part of the OS

– Examples of events: divide by 0, arithmetic overflow, page
fault, I/O request completes, typing Ctrl-C

User code Kernel code

Exception
Exception processing

by exception handler
• Return to I_current

• Return to I_next

• Abort

Event I_current
I_next

0
1

2
...

n-1

Exception Tables

▪ Each type of event has a
unique exception number k

▪ k = index into exception table
(a.k.a. interrupt vector)

▪ Handler k is called each time
exception k occursException Table

Code for

exception handler 0

Code for

exception handler 1

Code for

exception handler 2

Code for

exception handler n-1

...

Exception numbers

Asynchronous Exceptions (Interrupts)

▪ Caused by events external to the processor

– Indicated by setting the processor’s interrupt pin

– Handler returns to “next” instruction

▪ Examples:

– Timer interrupt

• Every few msec, an external timer chip triggers an interrupt

• Used by the kernel to take back control from user program

– I/O interrupt from external device

• Hitting Ctrl-C at the keyboard

• Arrival of a packet from a network

• Arrival of data from a disk

Synchronous Exceptions

▪ Caused by events that occur as a result of executing an instruction:

– Traps
• Intentional, set program up to “trip the trap” and do something

• Examples: software interrupts, system calls, gdb breakpoints

• Returns control to “next” instruction

– Faults
• Unintentional but possibly recoverable

• Examples: page faults (recoverable), protection faults (unrecoverable),
floating point exceptions

• Either re-executes the failed (“current”) instruction or aborts

– Aborts
• Unintentional and unrecoverable

• Examples: illegal instruction, parity error, machine check

• Aborts current program

System Calls

Number Name Description

0 read Read file

1 write Write file

2 open Open file

3 close Close file

4 stat Get info about file

57 fork Create process

59 execve Execute a program

60 _exit Terminate process

62 kill Send signal to process

 Each x86-64 system call has a unique ID number

 Examples:

Virtual Memory Use Today - 1

▪ Servers/desktops/laptops/smartphones have full
demand-paged virtual memory

– Portability between machines with different memory sizes

– Protection between multiple users or multiple tasks

– Share small physical memory among active tasks

– Simplifies implementation of some OS features

▪ Vector supercomputers have translation and protection
but rarely complete demand-paging

▪ (Older Crays: base&bound, Japanese & Cray X1/X2: pages)
– Don’t waste expensive CPU time thrashing to disk (make jobs fit in memory)

– Mostly run in batch mode (run set of jobs that fits in memory)

– Difficult to implement restartable vector instructions

70

Virtual Memory Use Today - 2

▪Most embedded processors and DSPs provide
physical addressing only
Can’t afford area/speed/power budget for virtual memory support

Often there is no secondary storage to swap to!

Programs custom written for particular memory configuration in product

Difficult to implement restartable instructions for exposed architectures

▪Mostly DNN accelerators don’t use (complex) virtual
address
Working as IP or plug-in device, not running OS

Fixed task workloads and pattern

Still using some address mapping techniques (not complicated)

Hungry for energy and area, must be as efficient as possible

71

72

Next Lecture：Branch Prediction

73

Acknowledgements

▪ Some slides contain material developed and copyright by:
– Arvind (MIT)

– Krste Asanovic (MIT/UCB)

– Joel Emer (Intel/MIT)

– James Hoe (CMU)

– David Patterson (UCB)

– David Wentzlaff (Princeton University)

▪ MIT material derived from course 6.823

▪ UCB material derived from course CS252 and CS 61C

	幻灯片 1: Computer Architecture Lecture 07 – Address Translation & Virtual Mem
	幻灯片 2
	幻灯片 3: Bare Machine
	幻灯片 4: Managing Memory in Bare Machines
	幻灯片 5: Why do we need Virtual Address Space ?
	幻灯片 6: Why do we need Virtual Address Space ?
	幻灯片 7: Names for Virtual Memory Locations
	幻灯片 8: The Common Denominator：Address Translation
	幻灯片 9: Simple Base and Bound Translation
	幻灯片 10: Simple Base and Bound Translation
	幻灯片 11: Separate Areas for Program and Data
	幻灯片 12: Base and Bound Machine
	幻灯片 13: External Fragmentation with Segments
	幻灯片 14: Adding Disks to Hierarchy
	幻灯片 15: Two Ingredients to Modern Virtual Memory
	幻灯片 16: Modern Paged Virtual Memory System
	幻灯片 17: Paged Virtual Memory System (How)
	幻灯片 18: Private Address Space per User
	幻灯片 19: Paging Simplifies Memory Allocation
	幻灯片 20: Coping with Limited Primary Storage
	幻灯片 21: Where should Page Tables Reside ?
	幻灯片 22: Page Tables Live in Memory
	幻灯片 23: Linear Page Table
	幻灯片 24: Hierarchical Page Table Walk: SPARC v8
	幻灯片 25: Two-Level Page Tables in Physical Memory
	幻灯片 26: Address Translation & Protection Check
	幻灯片 27: Translation-Lookaside Buffers (TLB)
	幻灯片 28: TLB Designs
	幻灯片 29: Variable-Size Page TLB
	幻灯片 30: Handling a TLB Miss
	幻灯片 31: Handling a TLB Miss
	幻灯片 32: Handling a TLB Miss
	幻灯片 33: Page Fault Exception
	幻灯片 34: Page Fault Exception
	幻灯片 35: Handling VM-related exceptions
	幻灯片 36: Address Translation – Putting it all together
	幻灯片 37: Address Translation – Putting it all together
	幻灯片 38: Summary: Caching v.s Demand Paging
	幻灯片 39: Summary: TLB, Cache and Page
	幻灯片 40: Summary: TLB, Cache and Page
	幻灯片 41: Page-Based Virtual-Memory Machine (Hardware Page-Table Walk)
	幻灯片 42: Sequential Access to TLB & Cache (Physical Index/Physical Tag, PIPT)
	幻灯片 43: Address Translation in CPU Pipeline
	幻灯片 44: Virtual-Address Caches
	幻灯片 45: Homonym in Virtual Address
	幻灯片 46: Aliasing in Virtual-Address Caches
	幻灯片 47: Concurrent Access to TLB & Cache (Virtual Index/Physical Tag，VIPT)
	幻灯片 48: Concurrent Access to TLB & Large L1 The problem with L1 Cache > Page size
	幻灯片 49: Virtual-Index Physical-Tag Caches: Associative Organization
	幻灯片 50: A solution via Second-Level Cache
	幻灯片 51: Anti-Aliasing (VIPT) Using L2 [MIPS R10000,1996]
	幻灯片 52: Virtually Addressed Cache (Virtual Index/Virtual Tag, VIVT)
	幻灯片 53: Anti-Aliasing (VIVT) using L2
	幻灯片 54: Summary：Modern Virtual Memory Systems Illusion of a large, private, uniform store
	幻灯片 55: Why a Privileged Architecture?
	幻灯片 56: RISC-V Privilege Modes
	幻灯片 57: Physical Memory Protection (PMP)
	幻灯片 58: M-Mode Controls PMPs
	幻灯片 59: Extended Page Tables (EPT) in HS Mode
	幻灯片 60: Memory Protection for RISC-V Modes
	幻灯片 61: RISC-V Secure Embedded Systems (M, U modes)
	幻灯片 62: RISC-V Virtual Memory Architectures (M, S, U modes)
	幻灯片 63: S-Mode runs on top of M-mode
	幻灯片 64: Privilege Level Change
	幻灯片 65: Exceptions
	幻灯片 66: Exception Tables
	幻灯片 67: Asynchronous Exceptions (Interrupts)
	幻灯片 68: Synchronous Exceptions
	幻灯片 69: System Calls
	幻灯片 70: Virtual Memory Use Today - 1
	幻灯片 71: Virtual Memory Use Today - 2
	幻灯片 72
	幻灯片 73: Acknowledgements

